ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СЕРТИФИКАТ

об утверждении типа средств измерений № **69005-17**

Срок действия утверждения типа до 24 октября 2027 г.

НАИМЕНОВАНИЕ И ОБОЗНАЧЕНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ **Контроллеры модульные MiCOM C264**

ИЗГОТОВИТЕЛЬ

Фирма "Schneider Electric Industries SAS", Франция

ПРАВООБЛАДАТЕЛЬ

-

КОД ИДЕНТИФИКАЦИИ ПРОИЗВОДСТВА **ОС**

ДОКУМЕНТ НА ПОВЕРКУ МП 2203-0309-2017

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 8 лет

Срок действия утвержденного типа средств измерений продлен приказом Федерального агентства по техническому регулированию и метрологии от 18 августа 2022 г. N 2045.

Заместитель Руководителя

Подлинник электронного документа, подписанного ЭП, хранится в системе электронного документооборота Федеральное агентство по техническому регулированию и метрологии.

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат: 029D109B000BAE27A64C995DDB060203A9

Кому выдан: Лазаренко Евгений Русланович Действителен: с 27.12.2021 до 27.12.2022

Е.Р.Лазаренко

«18» октября 2022 г.

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Контроллеры модульные МіСОМ С264

Назначение средства измерений

Контроллеры модульные MiCOM C264 (далее - контроллеры) предназначены для измерений электроэнергетических величин при контроле, регулировании и управлении на объектах энергетики.

Описание средства измерений

Принцип действия контроллеров основан на преобразовании мгновенных значений сигналов измеряемых величин в цифровые коды и выдачу полученных кодов с последующим вычислением значений измеряемых величин из полученного массива выборок.

Контроллеры выполнены в виде встраиваемых в стойку блоков. На задней панели контроллеров размещены выводы плат. Контроллеры модульные MiCOM C264 выпускаются в компактных корпусах 40 ТЕ (C264C) и 60 ТЕ и 80 ТЕ (C264), отличающихся габаритными размерами и количеством измерительных входов. Каждая модификация имеет два исполнения: с платой входов трансформаторов тока (ТТ) и трансформаторов напряжения (ТН).

Метрологические характеристики контроллеров обеспечиваются платами аналоговых входов (AIU201, AIU211, TMU210, TMU220).

В составе одного контроллера могут использоваться несколько дополнительных плат аналоговых входов. Контроллеры выпускаются в четырех вариантах исполнения для различных номинальных напряжений питания и количества установленных плат: A01, A02, A03, A04.

Общий вид контроллеров представлен на рисунке 1.

Пломбирование контроллеров от несанкционированного доступа не предусмотрено.

контроллер С264С в корпусе 40 ТЕ

контроллер С264 в корпусе 80 ТЕ

контроллер С264 в корпусе 60 ТЕ

Рисунок 1 - Общий вид контроллеров модульных МіСОМ С264.

Программное обеспечение

Программное обеспечение контроллеров является встроенным и выполняет функции управления режимами работы приборов. Результаты измерений и расчетов могут индицироваться непосредственно на дисплее контроллеров или на дисплее компьютера.

К метрологически значимой части программного обеспечения относится программа прошивки прибора (ВПО), которая защищена специальным паролем.

Идентификационные данные ВПО контроллеров модульных MiCOM C264 представлены в таблице 1.

Уровень защиты ПО контроллеров от непреднамеренных и преднамеренных изменений соответствует «среднему» в соответствии Р 50.2.077-2014.

Влияние ПО учтено при нормировании метрологических и технических характеристик приборов.

Таблица 1- Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	MiCOM Computer	
Номер версии (идентификационный номер) ПО	VX.YZ*	
Цифровой идентификатор ПО	=	
Примечание - * - X.YZ≥4.4		

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение
Аналоговые входы (дополнительные платы	i AIU201, AIU210, AIU211)
Количество измерительных каналов одной	
дополнительной платы, шт.:	
- AIU201	4
- AIU210, AIU211	8
Диапазоны измерений напряжения постоянного тока дл	п
платы AIU201, B	от -1,25 до +1,25
	от -2,5 до +2,5
	от -5 до +5
	от -10 до +10

Продолжение таблицы 2

Продолжение таблицы 2		
Наименование характеристики	Значение	
Диапазоны измерений силы постоянного тока, мА	ока, мА от -1 до +1 от -5 до +5	
at at		
		от -10 до +10
	9	от -20 до +20
		от +4 до +20
Пределы допускаемой основной приведенной к		
диапазону измерений погрешности при измерении		
напряжения и силы постоянного тока, %	$\pm 0,1$	
Пределы дополнительной приведенной погрешности		
измерений напряжения и силы постоянного тока при		
изменении температуры окружающей среды, %/°К	$\pm 3.10^{-5}$	
Входы ТТ/ТН (дополнительные платы	TMU210, TM	
Потребляемая мощность каждой цепью тока, В А, не	TMU210	TMU220
более:	11.10210	11.10220
при номинальном токе 1А	0,1	0,02
при номинальном токе 5 А	0,5	0,02
Потребляемая мощность каждой цепью напряжения,	0,0	0,02
В.А, не более	0,1	0,01
Потребляемая мощность от внутреннего источника		0,01
питания по шине 5В, мВт	300	600
Количество трансформаторов тока (ТТ), шт.	4	4
	4	5
Количество трансформатор напряжения (ТН), шт.	4	
Диапазон измерений напряжения переменного тока, В		от 7 до 577
Пределы допускаемой основной погрешности измерений		
напряжения переменного тока, %	. 0 5 (8)	
- в диапазоне измерений от 7 до 577 B	$\pm 0,5 (\delta)$	-
- в диапазоне измерений от 7 до 45 B	-	±0,3 (γ)
- в диапазоне измерений св. 45 до 200 включ., В	_	$\pm 0.2 (8)$
- в диапазоне измерений св. 200 до 577 включ., В	=	$\pm 0.3 (\delta)$
Диапазоны измерений силы переменного тока, А:		
- при номинальном токе 1 A	от 0,2 до 4	
- при номинальном токе 5 A		от 0,2 до 20
Пределы допускаемой основной погрешности измерений		
силы переменного тока, %	$\pm 0,5 (\delta)$	$\pm 0.2 (\gamma)$
		(от 0,2 А до
		номинального тока);
	04	$\pm 0,5 (\delta)$
		(от номинального до
		максимального тока)
Диапазоны измерений частоты, Гц		от 45 до 66
Пределы допускаемой основной погрешности измерений		
частоты, Гц		$\pm 0,01 \; (\Delta)$
Пределы дополнительной погрешности измерений		
напряжения, тока и частоты при изменении температуры		4.4.5
окружающей среды, %/°К		$\pm 1.10^{-5} (\gamma)$
Диапазоны измерений угла сдвига фаз, °		от 0 до 360
Пределы допускаемой основной погрешности измерений		11.0 (1)
угла сдвига фаз, °		$\pm 1,0 (\Delta)$
Диапазоны измерений коэффициента мощности		от -1 до +1

Продолжение таблицы 2

Наименование характеристики	Значение	
Пределы допускаемой приведенной к диапазону измерений погрешности при измерении активной, реактивной и полной мощности отдельно по фазам и		
суммарно по трем фазам, %	$\pm 1,0 (\gamma)$	$\pm 0.5 (\gamma)$
Примечание: γ – приведенная погрешность; δ – относи	тельная погрец	иность; ∆-абсолютна

Примечание: γ — приведенная погрешность; δ — относительная погрешность; Δ — абсолютная погрешность измерений.

Таблица 3 – Основные технические характеристики

Наименование параметра	Значение	
Степень защиты корпуса	IP20	
Степень защиты передней панели	IP52	
Напряжение электропитания, В:		
A01	24 (постоянный ток)	
A02	48-60 (постоянный ток)	
A03	110-125 (постоянный ток)	
A04	220 (постоянный ток);	
	230 (переменный ток)	
Габаритные размеры (Ш \times В \times Г), мм не более:		
корпус 40ТЕ	206	
	177	
	220	
корпус 60 ТЕ	310	
	170	
	220	
корпус 80 ТЕ	414	
	177	
	220	
Потребляемая мощность, Вт, не более:		
- корпус 40ТЕ	22	
- корпус 60 ТЕ	31	
- корпус 80 ТЕ	40	
Масса, кг, не более:		
- корпус 40ТЕ	4	
- корпус 60 ТЕ	6	
- корпус 80 ТЕ	8	
Условия эксплуатации:	B.	
- температура окружающего воздуха, °С	от -25 до +55	
- относительная влажность при температуре 40 °C, %, не		
более	93	
Средний срок службы, лет, не менее	20	
Средняя наработка на отказ, ч, не менее	200000	

Знак утверждения типа

наносится в виде наклейки на лицевую панель корпуса контроллера в виде наклейки и на титульном листе паспорта типографским способом.

Комплектность средства измерений

Комплектность контроллеров модульных МіСОМ С264 приведена в таблице 4.

Таблица 4 - Комплектность контроллеров модульных MiCOM C264

Наименование	Обозначение	Количество
Контроллеры модульные МіСОМ С264	_	1 шт.
Паспорт	_	1 экз.
Руководство по эксплуатации	-	1 экз.
Методика поверки	МП 2203-0309-2017	1 экз.

Поверка

осуществляется по документу МП 2203-0309-2017 «Контроллеры модульные MiCOM C264. Методика поверки», утвержденному Φ ГУП «ВНИИМ им. Д.И. Менделеева» 28 июля 2017 г.

Основные средства поверки:

- установка поверочная универсальная «УППУ-МЭ» (регистрационный номер в Федеральном информационном фонде № 57346-14);
- калибратор многофункциональный TRX-IIR, (регистрационный номер в Федеральном информационном фонде № 18087-04).

Допускается применение аналогичных средства поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде оттиска клейма поверителя.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к контроллерам модульным MiCOM C264

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические требования

ГОСТ 8.022-91 ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне 1 10^{-16} _ 30 A

ГОСТ Р 8.767-2011 ГСИ. Государственная поверочная схема для средств измерений силы переменного электрического тока от $1\cdot10^{-8}$ до 100 А в диапазоне частот от $1\cdot10^{-1}$ до $1\cdot10^{6}$ Гц

ГОСТ Р 8.648-2015 ГСИ Государственная поверочная схема для средств измерений переменного электрического напряжения до 1000 В в диапазоне частот от $1\cdot10^{-2}$ до $2\cdot10^9$ Гц

ГОСТ 8.551-2013 ГСИ Государственная поверочная схема для средств измерений электрической мощности и электрической энергии в диапазоне частот от 1 до 2500 Гц

Техническая документация фирмы «Schneider Electric Industries SAS», Франция.

Изготовитель

Фирма «Schneider Electric Industries SAS», Франция

Адрес: 89, Boulevard Franklin Roosevelt, 92500 Rueil-Malmaison, France

Тел./факс: + 33 (0) 1 41 29 70 00/ +33 (0) 1 41 29 71 00

Web-сайт: www.schneider-electric.ru E-mail: ru.ccc@ru.schneider-electric.com

Заявитель

Акционерное общество «Шнейдер Электрик» (АО «Шнейдер Электрик»)

ИНН: 7712092928

Адрес: 127018, Россия, г. Москва, ул. Двинцев, 12, корп. 1

Тел.: +7 (495) 777-99-90 Факс: +7 (495) 777-99-92

Web-сайт: www.schneider-electric.ru E-mail: ru.ccc@ru.schneider-electric.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

(ФГУП «ВНИИМ им. Д. И. Менделеева»)

Адрес: 190005, г. Санкт-Петербург, Московский пр., 19

Тел.: +7 (812) 251-76-01 Факс: +7 (812) 713-01-14 Web-сайт: www.vniim.ru E-mail: info@vniim.ru

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель

Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

M II

« 02»

2017 г.

Youar

and h

ПРОШНУРОВАНО, ПРОНУМЕРОВАНО И СКРЕПЛЕНО ПЕЧАТЬЮ Б/шест) ПИСТОВ(А)

