Dēkraft

Руководство по эксплуатации

EHC

Регулятор реактивной мощности ТМ Dekraft серии КР-101, артикулы 50570DEK-50589DEK

М Опасность!

- Во избежание неисправностей и риска поражения электрическим током категорически запрещается обслуживание трансформатора тока мокрыми руками, а также запрещается касаться деталей, находящихся под напряжением во время эксплуатации.
- Во избежание серьезных последствий для персонала на время проведения технического обслуживания и технического ухода за устройством данным изделием необходимо отключить вышестоящий источник питания повышенной мощности и убедиться, что вводные клеммы входных проводов не находятся под напряжением.

∧ Внимание!

- Установка и техническое обслуживание должны выполняться квалифицированными специалистами.
- Перед использованием настоящего изделия убедитесь, что рабочее напряжение, номинальный ток и род тока соответствуют рабочим требованиям.
- В случае если вам необходимо приобрести вспомогательные принадлежности для УКРМ воспользуйтесь предложениями нашей компании в целях обеспечения надлежащего уровня качества. Мы не несем ответственность за последствия при использовании вспомогательных принадлежностей, произведенных сторонними компаниями.
- Необходимо регулярно затягивать клеммы устройства, удалять с него пыль.
- Предотвратите попадание загрязнений на изделие.
- Утилизируйте изделие по окончании срока его эксплуатации.

1. Введение

Данное руководство по эксплуатации распространяется на регулятор реактивной мощности торговой марки Dekraft серии KP-101, артикулы 50570DEK - 50589DEK.

2. Соответствие стандартам

Регулятор реактивной мощности серии KP-101 торговой марки Dekraft соответствует стандартам ГОСТ IEC 60947-1 и ГОСТ IEC 60947-6-1 и техническим регламентам ТР ТС 004/2011 «О безопасности низковольтного оборудования», ТР ТС 020/2011 «Электромагнитная совместимость технических средств».

3. Назначение и область применения

Регулятор реактивной мощности серии КР-101 предназначен для автоматической регулировки устройства компенсации реактивной мощности в низковольтной распределительной сети, что позволяет достичь заданного пользователем коэффициента мощности, повышает эффективность силового трансформатора, уменьшает потери в линии и улучшает качество электроэнергии.

В регуляторе реализованы следующие функции и возможности:

- Расчет необходимой компенсируемой мощности производится в соответствии с реактивной мощностью первой гармоники, что позволяет избежать любой формы скачка напряжения при переключении, а в случае гармонических искажений может правильно отображать коэффициент мощности.
- Высокая точность измерения коэффициента мощности, широкий диапазон отображения.
- Отображение коэффициента мощности в режиме реального времени.
- Отображение коэффициента искажений напряжения и коэффициента искажений тока в режиме реального времени.
- Наличие различных режимов кодировки выводов для выбора пользователем.
- Наличие возможности подключения до 12 ступеней
- Понятный человеко-машинный интерфейс и удобная работа.
- Цифровой способ регулировки всех управляющих параметров, простота в использовании.
- Наличие двух режимов работы: автоматический и ручной.
- Функция защиты от повышенного и пониженного напряжений.
- Функция защиты от выхода за допустимые пределы гармоники напряжения. По умолчанию данная опция отключена, но может быть включена пользователем.
- Функция защиты при отключении питания, без потери данных.
- Входное сопротивление для сигнала тока низкое ≤0,01Ом.
- Опциональная функция передачи данных.

4. Правила и условия эксплуатации, монтажа и транспортировки

- 4.1. Правила и условия эксплуатации и монтажа
- Место установки продукта должно располагаться на высоте не более 2000 м над уровнем моря.
- Температура окружающей среды не должна превышать +40 °С и не должна быть ниже -25 °С.
- Относительная влажность не должна превышать 50% при 40 °; не более 90 % при 20 °C.
- Окружающая среда не должна содержать агрессивных газов, токопроводящей пыли, легковоспламеняющихся и взрывоопасных веществ.
- Место установки не должно подвергаться колебаниям, толчкам или вибрации.
- Срок службы изделия составляет 10 лет при соблюдении рекомендаций изготовителя по монтажу, обслуживанию и ремонту.
- Устанавливается в шкаф УКРМ (Установка компенсации реактивной мощности), в котором предусмотрена вентиляция, рассчитанная согласно всем установленным компонентам.
- Рекомендации по защитным аппаратам аналогично рассчитываются на всю сборку УКРМ, в состав которой входит регулятор реактивной мощности.
- Монтаж проводится на дверцу шкафа УКРМ, согласно монтажным отверстиям по п.10.2. При этом осуществляется легкий доступ к регулятору, а его отключение производится с его передней панели.
- В случае нарушения правил эксплуатации оборудования, установленных изготовителем, может ухудшаться защита, примененная в данном оборудовании.
- 4.2. Правила и условия хранения и транспортировки
- Температура: от -25 °C до +60°C; до +70 °C на время не более 24 часов.
- Относительная влажность: ≤ 90 %.
- Транспортировка должна осуществляться закрытым транспортом. Не допускается бросать и кантовать товар.
- Срок хранения 3 года.
- 5. Структура условного обозначения

KP-101-400B-12-RS485

Серия регулятора Номинальное рабочее напряжение: 400B

Наличие выхода RS-485

Количество ступеней регулирования:

12

6. Технические характеристики

Параметр	Значение параметра
Номинальное рабочее напряжение	380 B AC ±15 % (Ua–Uc), 220 B AC
Номинальный рабочий ток	0-5 A
Частота	45-65 Гц
Чувствительность	50 mA
Входное сопротивление токового	<0,01 Ом
сигнала	5/01 0
Защита от пониженного напряжения	300 B, 170 B
Рабочий режим	Ручной / Автоматический
Выходные контуры	12 контуров
Мощность выходов	5 A, резистивная нагрузка 220 B AC
	3 A, резистивная нагрузка 380 B AC
Потребляемая мощность	10 BA
Степень защиты	IP30 для корпуса, IP40 для панели управления

7. Описание передней панели прибора

Номер	Описание элемента
1	Серия регулятора реактивной мощности
2	Тип продукта
3	Индикация наличия в продукте функции modbus RTU
4	Индикатор предварительного включения: загорание данного индикатора указывает
4	на то, что контроллер ожидает включения конденсатора.
5	Индикаторы сигнализации о выходе за пределы нормативного уровня
3	перенапряжения, снижения напряжения и искажений напряжения: при загорании

Номер	Описание элемента
	данного индикатора контроллер отключает включенный конденсатор с задержкой
	каждого шага в 1 секунду.
6	Индикатор предварительного отключения: загорание данного индикатора
0	указывает на то, что контроллер ожидает отключения конденсатора.
7	Индикаторы включения ступеней УКРМ
8	Индикатор ручной/автоматической работы А/М: включен при автоматическом
٥	режиме работе, при ручном режиме работы отключен
	Индикатор коэффициента мощности РF: в автоматическом режиме работы при
9	выборе данного параметра включается индикатор и на дисплее отображается
	значение коэффициента мощности в режиме реального времени
	Индикатор напряжения сети V: в автоматическом режиме работы при выборе
10	данного параметра включается индикатор и на дисплее отображается значение
	напряжения в режиме реального времени
	Индикатор тока сети l: в автоматическом режиме работы при выборе данного
11	параметра включается индикатор и на дисплее отображается значение тока в
	режиме реального времени
	Индикатор коэффициента искажений напряжения THDV: в автоматическом режиме
12	работы при выборе данного параметра включается индикатор и на дисплее
	отображается коэффициент искажений напряжения в режиме реального времени
	Индикатор коэффициента искажений тока THDI: в автоматическом режиме работы
13	при выборе данного параметра включается индикатор и на дисплее отображается
	коэффициент искажений тока в режиме реального времени
	Индикатор активной мощности Р (кВт): в автоматическом режиме работы при
14	выборе данного параметра включается индикатор и на дисплее отображается
	активная мощность в режиме реального времени
	Индикатор реактивной мощности Q (кВАр): в автоматическом режиме работы при
15	выборе данного параметра включается индикатор и на дисплее отображается
	реактивная мощность в режиме реального времени
1.0	Индикатор полной мощности S (кВА): в автоматическом режиме работы при выборе
16	данного параметра включается индикатор и на дисплее отображается полная
	мощность в режиме реального времени
17	Индикатор частоты (Гц): в автоматическом режиме работы при выборе данного
17	параметра включается индикатор и на дисплее отображается частота сети в режиме
	реального времени
18	Кнопка меню: нажмите и удерживайте кнопку меню в течение 3 секунд, чтобы
	запустить программу настройки параметров.
19	Кнопка вверх/увеличения: используется для выбора меню или настройки
	предустановленных параметров в сторону увеличения.
20	Кнопка вниз / уменьшение: используется для выбора меню или настройки
	предустановленных параметров в сторону уменьшения.

8. Описание настройки параметров

Для входа в режим настройки параметров удерживайте нажатой кнопку меню в течение 3 секунд. Для сохранения скорректированных параметров и выхода из режима настройки параметров удерживайте нажатой кнопку меню в течение 3 секунд для возвращения в режим автоматического или ручного управления. Все установленные параметры будут сохранены во внутреннюю энергонезависимую память прибора, данные будут сохранены в том числе после отключения питания. При включении прибора рабочие параметры будут установлены с использованием данных из внутренней энергонезависимой памяти.

8.1 Автоматический / ручной режимы работы

Контроллер имеет два режима работы:

- автоматический режим, в котором переключение ступеней осуществляется в соответствии с заданными настройками;
- ручной режим, в котором включение ступеней осуществляется вручную пользователем.

Выбор режима работы:

1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на дисплее загорится:

RULO

- 2. Нажмите кнопку меню: **ОП** на дисплее означает, что текущий режим работы автоматический; **ОFF** на дисплее означает, что текущий режим работы ручной.
- 3. Вы можете выбрать между автоматическим и ручным режимом работы используя кнопки вверх и вниз для изменения значения.
- 4. Для сохранения измененного значения параметра и выхода из меню настройки удерживайте нажатой кнопку меню в течение 3 секунд.
- В ручном режиме работы индикатор А/М гаснет, в автоматическом режиме работы индикатор А/М постоянно горит.
- 8.2 Настройка коэффициента мощности
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на дисплее загорится:

RULO

- 2. При помощи кнопок вверх или вниз выберите необходимый пункт меню: загорится индикатор коэффициента мощности и на дисплее отобразится **Со**5.
- 3. Нажмите кнопку меню для установки требуемого коэффициента мощности. По

умолчанию его значение **Q950** и может при помощи кнопок вверх или вниз регулироваться в диапазоне от 0.700 с запаздыванием до 0.700 с опережением.

- 4. Для сохранения измененного значения параметра и выхода из меню настройки удерживайте нажатой кнопку меню в течение 3 секунд.
- 8.3 Предустановка времени задержки включения
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на дисплее загорится: $\mathbf{RU\Gamma_0}$
- 2. При нажатии кнопок вверх и вниз, дождитесь загорания индикатора задержки включения и отображения на дисплее $\overset{ extbf{dEL}}{ extbf{L}}$
- 3. Нажмите кнопку меню. Заданное время предустановленной задержки включения:

DD20 и отображено на дисплее. Время задержки включения может регулироваться в диапазоне от 1 секунды до 240 секунд (для обычной модели) или от 0 секунд до 240 секунд (для модели постоянного тока, PS: 0 секунд означает менее 1 секунды) с помощью кнопок вверх и вниз. При нажатии на кнопку меню индикатор включения с задержкой загорается, а на дисплее отображается **dEL**

4. Используйте кнопки вверх и вниз для выбора других предустановленных параметров. Удерживайте нажатой кнопку меню в течение 3 секунд для сохранения

измененных параметров и выхода из меню настройки параметра.

- 8.4 Предустановка времени задержки включения
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на дисплее загорится: **ЯШГ** о
- 2. При нажатии кнопок вверх и вниз, дождитесь загорания индикатора включения и отображения на дисплее **ddEL**.
- 3. Нажмите кнопку меню. Заданное временя задержки разряда: **ООО !** и отображено на дисплее. Время задержки разряда может регулироваться в диапазоне от 0 до 180 секунд с помощью кнопок вверх и вниз. При нажатии на кнопку меню загорается индикатор задержки разряда, и на дисплее отображается **ddEL**..
- 4. Используйте кнопки вверх и вниз для выбора других предустановленных параметров. Удерживайте нажатой кнопку меню в течение 3 секунд для сохранения измененных параметров и выхода из меню настройки параметра.
- 8.5 Предустановка защиты от перенапряжения
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на дисплее загорится: **RUГ** $_{f O}$
- 2. Нажмите кнопки увеличения и уменьшения до загорания индикатора выбора задержки включения и отображения на цифровом индикаторе **L**.
- 3. Нажмите кнопку меню для предустановки значения защиты от перенапряжения: **ДЧ50** отображается на цифровом индикаторе, и значение защиты от перенапряжения может выбираться от линейного напряжения 380В или фазного напряжения 220В до линейного напряжения 456В или фазного напряжения 264В с помощью кнопок увеличения и уменьшения. При нажатии кнопки меню загорается индикатор защиты от перенапряжения и на цифровом индикаторе отображается **Ц**.
- 4. Нажмите кнопки увеличения и уменьшения для выбора других предустановленных параметров. При удерживании нажатой кнопки меню в течение 3 секунд сохраните корректированные параметры управления и выйдете из меню предустановленных параметров.
- 8.6 Предустановка защиты от искажений напряжения
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, и на цифровом индикаторе отобразится **РИГ** •
- 2. Нажмите кнопки увеличения и уменьшения до загорания индикатора выбора защиты от искажений и отображения на цифровом индикаторе **d 15L**
- 3. Нажмите кнопку меню для предустановки значения защиты от искажений: **ШШ** отображается на цифровом индикаторе (по умолчанию данная опция отключена, но может быть включена пользователем), и значение защиты от искажений может выбираться в диапазоне от 1,0% до 50,0% с помощью кнопок увеличения и уменьшения. Нажмите кнопку меню до загорания индикатора защиты от искажений и отображения на цифровом индикаторе**d 15**£
- 4. Нажмите кнопки увеличения и уменьшения для выбора других предустановленных параметров. При удерживании нажатой кнопки меню в течение 3 секунд сохраните

скорректированные параметры управления и выйдете из меню предустановленных параметров.

- 8.7 Предустановка коэффициента трансформации трансформатора тока
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на цифровом индикаторе отобразится **РИГ о**
- 2. Нажмите кнопки увеличения и уменьшения до загорания индикатора трансформации СТ и отображения на цифровом индикаторе ${\sf L}{\sf L}$
- 3. Нажмите кнопку меню для предустановки значения защиты от искажений: **0050** отображается на цифровом индикаторе, а коэффициент трансформации СТ может выбираться в диапазоне от 50 до 9000 с помощью кнопок увеличения и уменьшения. Нажмите кнопку меню до загорания индикатора коэффициента трансформации СТ и отображения на цифровом индикаторе
- 4. Нажмите кнопки увеличения и уменьшения для выбора других предустановленных параметров. При удерживании нажатой кнопки меню в течение 3 секунд сохраните скорректированные параметры управления и выйдете из меню предустановленных параметров.

Примечание: Коэффициент трансформации СТ относится к значению в числителе коэффициента трансформации трансформатора тока. Если коэффициент трансформации трансформатора тока равен 500/5, пользователь должен ввести 500.

- 8.8 Предустановка емкости С1 конденсатора (емкости конденсатора, контролируемого клеммой 1)
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на цифровом индикаторе отобразится **ЯШГо**
- 2. Нажмите кнопки увеличения и уменьшения до загорания индикатора предустановки емкости и отображения на цифровом индикаторе **С 1**.
- 3. Нажмите кнопку меню для предустановки емкости конденсатора С1: **О IOO** отображается на цифровом индикаторе, и емкость конденсатора С1 может выбираться в диапазоне от 0 кВАр до 150,0 кВАр с помощью кнопок увеличения и уменьшения. Нажмите кнопку меню до загорания индикатора настройки конденсатора и отображения на цифровом индикаторе **СоРУ**. Длительно нажмите кнопку уменьшения до отображения на цифровом индикаторе Предустановленные значения С2 ~ С12 будут автоматически изменены на значение С1.
- Примечание: Емкость C1 относится к значению емкости конденсатора (кВАр) с номером приводимого конденсатора C1. Более подробную информацию смотрите на схеме соединений.
- 4. Нажмите кнопки увеличения и уменьшения для выбора других предустановленных параметров. При удерживании нажатой кнопки меню в течение 3 секунд сохраните скорректированные
- параметры управления и выйдете из меню предустановленных параметров.

- 8.9 Предустановка емкости СХ конденсатора (емкости конденсатора, контролируемого клеммой X) (диапазон X 1 ~12)
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на цифровом индикаторе отобразится **ЯЦГо**
- 2. Нажмите кнопки увеличения и уменьшения до загорания индикатора настройки конденсатора и отображения на цифровом индикаторе \mathbf{L} \dot{X}
- 3. Нажмите кнопку меню для предустановки значения емкости СХ: ☐☐ ◀ отображается на цифровом индикаторе, и значение емкости СХ может выбираться в диапазоне от 0 кВАр до 150,0 кВАр с помощью кнопок увеличения и уменьшения. Нажмите кнопку меню до загорания индикатора настройки конденсатора и отображения на цифровом индикаторе С Д Длительно нажмите кнопку уменьшения до отображения на цифровом индикаторе С Предустановленные значения С(X+1) С12 будут автоматически изменены на значение СХ.

Примечание: Емкость СХ относится к значению емкости конденсатора (кВАр) с номером приводимого конденсатора СХ. Более подробную информацию смотрите на схеме соединений.

8.10 Предустановка адреса связи

- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на цифровом индикаторе отобразится **РUГ о**
- 2. Нажмите кнопки увеличения и уменьшения до загорания индикатора настройки связи и отображения на цифровом индикаторе **Add**.
- 3. Нажмите кнопку меню для предустановки адреса связи: **О IOO** отображается на цифровом индикаторе, а значение адреса связи может выбраться от 1 до 247 с помощью кнопок увеличения и уменьшения. Нажмите кнопку меню до загорания индикатора настройки связи и отображения на цифровом индикаторе **Pdd**.
- 4. Нажмите кнопки увеличения и уменьшения для выбора других предустановленных параметров. При удерживании нажатой кнопки меню в течение 3 секунд сохраните скорректированные параметры управления и выйдете из меню предустановленных параметров.

8.11 Предустановка адреса связи

- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на цифровом индикаторе отобразится **РИГ** •
- 2. Нажмите кнопки увеличения и уменьшения до загорания индикатора передачи данных по каналам связи и отображения на цифровом индикаторе **bRud**.
- 3. Нажмите кнопку меню для предустановки скорости передачи данных по каналам связи: **ОООЧ** отображается на цифровом индикаторе, и значение скорости передачи данных по каналам связи может выбираться от 1 до 5 с помощью кнопок увеличения и уменьшения. Нажмите кнопку меню до загорания индикатора настройки связи и отображения на цифровом индикаторе **БРыс**.
- 4. Нажмите кнопки увеличения и уменьшения для выбора других предустановленных параметров. При удерживании нажатой кнопки меню в течение 3 секунд сохраните скорректированные параметры управления и выйдете из меню предустановленных

параметров.

Примечание: фактическая скорость передачи данных по каналам связи обозначает: 1 - 1200 бит/с, 2-

2400 Бит/с, 3 - 4800 бит/с, 4 - 9600 бит/с и 5 - 19200 бит/с.

- 8.12 Предустановка контроля связи
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на цифровом индикаторе отобразится **ЯШГо**
- 2. Нажмите кнопки увеличения и уменьшения до загорания индикатора настройки связи и отображения на цифровом индикаторе **dR-R**.
- 3. Нажмите кнопку меню для предустановки контроля связи: **ООО** 1 отображается на цифровом индикаторе, и значение контроля связи может выбираться от 1 до 5 с помощью кнопок увеличения и уменьшения. Нажмите кнопку меню до загорания индикатора настройки связи и отображения на цифровом индикаторе **dR-R**.
- 4. Нажмите кнопки увеличения и уменьшения для выбора других предустановленных параметров. При удерживании нажатой кнопки меню в течение 3 секунд сохраните скорректированные параметры управления и выйдете из меню предустановленных параметров.

Примечание: **dRr R**1 означает отсутствие контроля 8N1, 2 означает контроль нечетности 8O1 и 3 означает контроль четности 8E1.

- 8.13 Предустановка количества выходных контуров
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на цифровом индикаторе отобразится **РИГ** •
- 2. Нажмите кнопки увеличения и уменьшения до отображения выбора на цифровом индикаторе **ОЦГР**.
- 3. Нажмите кнопку меню для предустановки количества выходных контуров: ^{© 12} отображается на цифровом индикаторе, а количество выходных контуров может выбираться от 1 до 12 с помощью кнопок увеличения и уменьшения. Нажмите кнопку меню до отображения на цифровом индикаторе **DUFP**.
- 4. Нажмите кнопки увеличения и уменьшения для выбора других предустановленных параметров. При удерживании нажатой кнопки меню в течение 3 секунд сохраните скорректированные параметры управления и выйдете из меню предустановленных параметров.
- 8.14 Предустановка коэффициента мощности при отключении
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на цифровом индикаторе отобразится **РГ** •
- 2. Нажмите кнопки увеличения и уменьшения до отображения выбора на цифровом индикаторе**с Со**5.
- 3. Нажмите кнопку меню для предустановки коэффициента мощности при отключении:

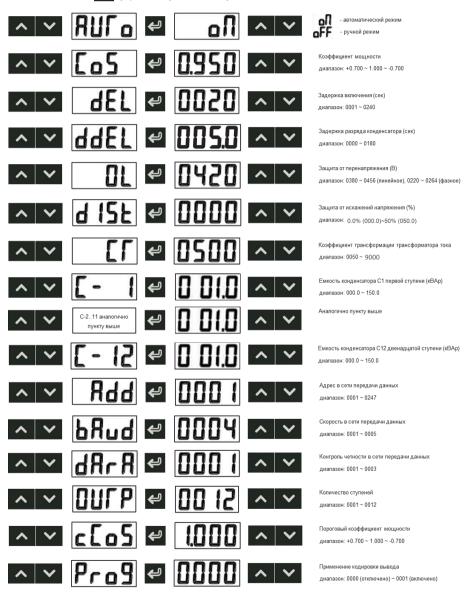
шоо

отображается на цифровом индикаторе, а количество выходного контура может регулироваться в диапазоне от 0,700 с запаздыванием до 0,700 с опережением с

помощью кнопок увеличения и уменьшения. Нажмите кнопку меню до отображения на цифровом индикаторе **сСо5**.

4. Нажмите кнопки увеличения и уменьшения для выбора других предустановленных параметров. При удерживании нажатой кнопки меню в течение 3 секунд сохраните скорректированные параметры управления и выйдете из меню предустановленных параметров.

Примечание: предустановленное значение **Соб**должно быть больше или равно предустановленному значению **Соб**, а значение по умолчанию **Соб** равно 1.000, поэтому пользователю не нужно его настраивать.


- 8.15 Предустановка включения кодировки вывода
- 1. Нажмите и удерживайте кнопку меню в течение 3 секунд, на цифровом индикаторе отобразится **РШГ** •
- 2. Нажмите кнопки увеличения и уменьшения до отображения выбора на цифровом индикаторе **Рго9**.
- 3. Нажмите кнопку меню для предустановки коэффициента мощности при отключении:

отображается на цифровом индикаторе, а метод кодировки может регулироваться от 0 (выкл.) до 1 (вкл.) с помощью кнопок увеличения и уменьшения. Нажмите кнопку меню до отображения на цифровом индикаторе **РгоЗ**.

4. Нажмите кнопки увеличения и уменьшения для выбора других предустановленных параметров. При удерживании нажатой кнопки меню в течение 3 секунд сохраните скорректированные параметры управления и выйдете из меню предустановленных параметров.

Примечание: предустановленное значение **РгоЗ**-равно 0: после следующего включения с задержкой будет переключено не более чем одного конденсаторного блока, а предустановленное значение равно 1: после следующего включения с задержкой может включиться несколько конденсаторных блоков.

Для входа в меню настройки параметров удерживайте кнопку меню в течение 3 секунд

9. Пример применения кодировки вывода

Предусмотрено несколько кодировок емкостей ступеней.

Значения суммарной емкости конденсаторов ступеней C1 ~ C12 могут быть выставлены в соответствии с вариантами пропорций ниже.

Примечание: порядок расположения конденсаторов не важен. Однако, необходимо обеспечить соответствие фактической емкости заданному значению.

```
C1: C2: C3: C4: C5: .....: C12

1: 1: 1: 1: 1: 1: 1: .....: 1

1: 2: 2: 2: 2: 2: 2: .....: 2

1: 2: 4: 4: 4: 4: .....: 4

1: 2: 4: 8: 8: .....: 2

1: 1: 2: 4: 4: 4: .....: 4

1: 1: 2: 4: 4: 4: .....: 3

1: 1: 2: 3: 3: 3: 3: .....: 3

1: 2: 3: 3: 6: 6: .....: 6

1: 1: 2: 3: 3: 6: .....: 6
```

Преимуществом кодировки вывода является получение множества выводов с различной емкостью за счет комбинации конденсаторов разной емкости. Это позволяет избежать недостатков методов не кодированного вывода, таких как недостаточная компенсация, избыточная компенсация, колебания переключения и так далее.

Если общую компенсационную емкость принять 75 кВАр, количество выходных контуров равно 4, а в качестве режима кодирования принимаются 1 ~ 4 следующие комбинации емкостей конденсаторов:

Номер конденсатора	C1	C2	C3	C4
Пропорциональная форма 1 ===>	20:	20:	20:	20
Пропорциональная форма 2 ===>	10:	20:	20:	20
Пропорциональная форма 3 ===>	6:	12:	24:	24
Пропорциональная форма 4 ===>	5:	10:	20:	40

Пропорциональная форма 1 имеет 4 комбинации выходных емкостей: 20, 40, 60 и 80; Пропорциональная форма 2 имеет 7 комбинаций выходных емкостей: 10, 20, 30, 40, 50, 60 и 70;

Пропорциональная форма 3 имеет 11 комбинаций выходных емкостей: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 и 66;

Пропорциональная форма 4 имеет 15 комбинаций выходных емкостей: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 и 75.

Из приведенных выше результатов видно, что пропорциональная форма 4 имеет максимальное количество методов комбинации, а пропорциональная форма 1 имеет минимальное количество комбинаций. С технической точки зрения,

пропорциональная форма 4 является лучшим методом компенсации. Однако, поскольку в ней существуют различные спецификации конденсаторов, эта схема

доставит некоторые неудобства при закупке компонентов и последующем обслуживании, поэтому пользователи выбирают подходящую пропорциональную форму в соответствии с комплексными факторами, такими как местные требования, установка, закупка и последующее обслуживание.

Интерпретация термина: кодировка вывода.

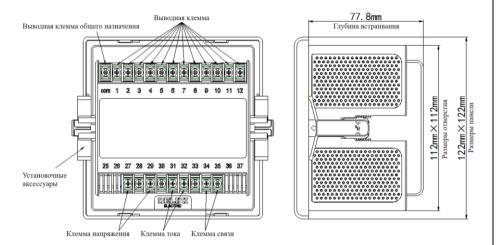
В данной инструкции кодировка вывода имеет два значения:

- а. Определение пропорционального отношения емкостей между конденсаторными блоками: взяв емкость конденсатора с номером С1 в качестве эталонной емкости, пользователь может рассчитать другие значения емкости конденсаторного блока в соответствии с пропорциональным отношением емкостей конденсаторов, определяемым в зависимости от выбранной пропорциональной формы. Если пользователь выбирает пропорциональную форму 3, количество выходных контуров 4 и емкость конденсатора С1 5,0 кВАр, то емкость конденсаторного блока С1-С4, соответствующая пропорциональному отношению для пропорциональной формы 3, должно быть следующей:С1: 5,0кВАр, С2: 10,0 кВАр, С3: 20,0кВАр, С4: 20,0кВАр, и так далее для других методов кодировки.
- b. Определение схемы управления выводом: ниже показана таблица, где мы используем "1", чтобы указать на включенную ступень, и "0", чтобы указать на отключенную ступень. Мы используем емкости ступеней, принятые в разделе а, чтобы проиллюстрировать процесс управления кодировкой вывода.

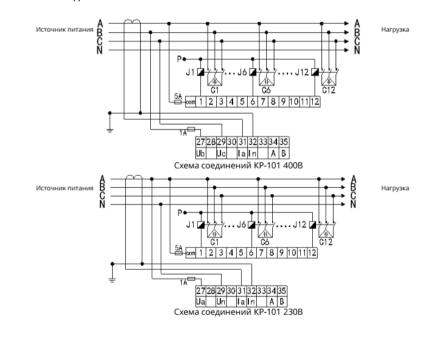
C1	C2	C3	C4	
5kvar	10kvar	20kvar	20kvar	
0	0	0	0	Okvar
1	0	0	0	5kvar
1	1	0	0	15kvar
0	0	1	0	20kvar
1	0	1	0	25kvar
0	1	1	0	30kvar
1	1	1	0	35kvar
0	0	1	1	40kvar
1	0	1	1	45kvar
0	1	1	1	50kvar
1	1	1	1	55kvar

10. Общие указания, монтаж, принцип и схемы подключения

10.1 Общие указания


- Перед использованием внимательно ознакомьтесь с данным руководством.
- Монтаж должен выполняться квалифицированным профессионалом.
- Перед установкой убедитесь, что прибор отключен от сети.
- Во избежание поражения электрическим током не касайтесь токоведущих частей.
- Перед эксплуатацией проверьте соответствуют ли технические параметры устройства, указанные
- на паспортной табличке, вашему заказу и параметрам сети.
- Провода должны быть надежно затянуты.

10.2 Монтаж


Рекомендуется вертикальная установка.

Габаритные и установочные размеры.

- Размеры КР-101 составляют 122 × 122 × 77,8 мм.
- Размер монтажного отверстия составляет 112 × 112 мм.

10.3 Схемы соединения

При применении контактора с катушкой управления 380В, точка Р (измерительный прибор) подключается к фазам В или С. Подключите N при напряжении 220 В. При использовании данного изделия в среде с низким качеством электроэнергии рекомендуется установить в силовую цепь устройство для контроля качества электроэнергии.

Примечание: конкретная схема соединений зависит от конкретного изделия.

10.4 Принцип включения

Если конденсаторный блок не включается автоматически, пользователь должен проверить выполнение всех следующих условий:

- а. Значение коэффициента мощности системы ниже целевого значения коэффициента мошности.
- б. Индикатор сигнализации не загорается.
- в. Условия формулы 1 должны быть установлены.

Емкость
$$\mathcal{C}1 < Q - P imes \sqrt{\frac{1}{\cos \varphi^2} - 1}$$
 формула 1
Емкость $\mathcal{C}1 < P imes \sqrt{\frac{1}{\cos \varphi^2} - 1} - Q$ формула 2,

где Р - активная мощность,

Q - реактивная мощность,

cos φ – целевой коэффициент мощности.

Когда коэффициент мощности электросети превышает целевой коэффициент мощности и конденсаторный блок не может автоматически отключаться, пользователь должен проверить, выполняются ли следующие условия: аналогично, мы используем Р для представления активной мощности текущей электросети, Q для представления реактивной мощности текущей электросети и $\cos \varphi$ для представления целевого коэффициента мощности 1. Должно быть установлено условие формулы 2.

11. Передача данных

Стандартный протокол MODBUS-RTU.

Параметры передачи данных по умолчанию 9600 бит/с, 8N1.

Пример считывания одного регистра.

Хост отправляет (считывает содержимое регистра 0x01 (целевой коэффициент мощности))

Адрес	Команда	Адрес исходного регистра (старшие разряды)	Адрес исходного регистра (низшие разряды)	Количество регистров (старшие разряды)	Количество регистров (низшие разряды)	CRC16 (низшие разряды)	CRC16 (старшие разряды)
0x01	0x03	0x00	0x01	0x00	0x01	0xD5	0xCA

Ответ от устройства (целевой коэффициент мощности=0x03CA, в десятичной системе счисления 950)

Адрес	Команда	Длина данных	Дан	Данные		СRC16 (старшие
					разряды)	разряды)
0x01	0x03	0x02	0x03	0xCA	0x38	0xE3

Пример записи в регистр.

Отправлен от хоста (регистр 0х01 (целевой коэффициент мощности) изменен на 950, в

шестнадцатеричной системе счисления 0Х03В6)

Адрес	Команда		исходного регистра (низшие	регистров	Количество регистров (низшие разряды)	_	Дан		СRС16 (низшие разряды)	СRС16 (старшие разряды)
0x01	0x10	0x00	0x01	0x00	0x01	0x02	0x03	0xB6	0x26	0xC7

Ответ от ведомого устройства

Адрес	Команда	Адрес исходного регистра (старшие разряды)	Адрес исходного регистра (низшие разряды)	Количество регистров (старшие разряды)	Количество регистров (низшие разряды)	CRC16 (низшие разряды)	СRC16 (старшие разряды)
0x01	0x10	0x00	0x01	0x00	0x01	0x50	0x09

Возможные неисправности передачи данных и их решение.

1. Не устанавливается связь с прибором КР-101.

Убедитесь, что настройки связи контроллера: адрес ведомого устройства, скорость передачи данных в бодах, метод контроля и т.д., соответствует требованиям компьютера верхнего уровня. Если нет обмена данных между несколькими контроллерами на месте, проверьте точность и надежность подключения местной коммуникационной шины, а также исправность преобразователя RS485. Если один или несколько контроллеров имеют некорректную связь, проверьте соответствующие линии связи. Можно изменить адрес ведомого устройства неисправного и исправного контроллера для тестирования, устранения или подтверждения проблемы с программным обеспечением компьютера верхнего уровня, или протестировать, поменяв местами неисправный и исправный контроллер для устранения или подтверждения сбоя контроллера.

2. Получаемые с прибора КР-101 данные не верны.

Пожалуйста, внимательно прочтите инструкции по адресу хранения данных и формату хранения в таблице почтовых адресов и убедитесь в их преобразовании в соответствии с соответствующим форматом данных.

Таблица регистров

Адрес	Позиции	Описание	Тип данных	Длина данных	Считывание и запись	Примечание				
	Регистры для чтения и записи									
0000Н	AUTO	Режим работы	unsigned int	2 byte	R/W	0-авт. режим работы, 1-ручной режим работы				
0001H	cos	Целевой коэффициент мощности	int	2 byte	R/W	Диапазон коэффициентов мощности 700~1000~- 700 в единицах 0,001				
0002H	dEL	Включение с задержкой	unsigned int	2 byte	R/W	1-240с; 0-240с для постоянного тока (0-				

Адрес	Позиции	Описание	Тип данных	Длина данных	Считывание и запись	Примечание
				• •		менее 1с)
0003H	ddEL	Разряд с задержкой	unsigned int	2 byte	R/W	0-180c
0004H	OL	Порог срабатывания защиты от перенапряжения	unsigned int	2 byte	R/W	Диапазон перенапряжения 380- 456/220-264 в единицах В
0005H	dISt	Порог срабатывания защиты от искажений напряжения	unsigned int	2 byte	R/W	Диапазон коэффициента искажений напряжения 10-300 в единицах 0,1%
0006Н	СТ	Коэффициент трансформации трансформатора тока	unsigned int	2 byte	R/W	Диапазон коэффициента трансформации трансформатора тока 50-5000
0007H	cCOS	Коэффициент мощности при отключении	int			Диапазон коэффициентов мощности 700~1000~- 700 в единицах 0,001
0008H	Add	Адрес связи	unsigned int	2 byte	R/W	Диапазон адреса связи 1-247
0009H	bAud	Скорость передачи по каналам связи	unsigned int	2 byte	R/W	1: 1200bps 2: 2400bps 3: 4800bps 4: 9600bps 5: 1920bps
000AH	dArA	Контроль связи	unsigned int	2 byte	R/W	1: none 2: odd 3: even
000BH	OUTP	Количество выходных контуров	unsigned int	2 byte	R/W	Диапазон количества ступеней 1-12 (максимальное количество зависит от конкретного типа)
00CH	PROG	Режим емкостного выхода	unsigned int	2 byte	R/W	0-циклический режим, 1-кодировка вывода
000DH	C-1	Емкость конденсатора С1	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
000EH	C-2	Емкость конденсатора С2	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
000FH-	C-3	Емкость конденсатора СЗ	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
0010H	C-4	Емкость конденсатора С4	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар

Адрес	Позиции	Описание	Тип данных	Длина данных	Считывание и запись	Примечание
0011H	C-5	Емкость конденсатора С5	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
0012H	C-6	Емкость конденсатора С6	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
0013H	C-7	Емкость конденсатора С7	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
0014H	C-8	Емкость конденсатора С8	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
0015H	C-9	Емкость конденсатора С9	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
0016H	C-10	Емкость конденсатора С10	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
0017H	C-11	Емкость конденсатора С11	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
0018H	C-12	Емкость конденсатора С12	unsigned int	2 byte	R/W	Диапазон емкости 0- 1500, в единицах 0,1кВар
		F	егистры тол	ько для чтени	Я	
0031H	K1-16	Регистр состояния релейного выхода 1	unsigned int	2 byte	R	Бит 0-бит 15 соответствуют К1-К16 1 означает замыкание, а 0- размыкание
0032H 0033H	U	Напряжение	float	4 byte	R	В единицах В
0034H 0035H	1	Ток	float	4 byte	R	В единицах А
0036H 0037H	Р	Активная мощность	float	4 byte	R	В единицах кВт
0038H 0039H	Q	Реактивная мощность	float	4 byte	R	В единицах кВАр
003AH 003BH	S	Полная мощность	float	4 byte	R	B единицах кBA
003CH 003DH	PF	Коэффициент мощности	float	4 byte	R	
003EH 003FH	FREQ	Частота	float	4 byte	R	В единицах Гц
0040H 0041H	THDV	Коэффициент искажений напряжения	float	4 byte	R	%
0042H 0043H	THDV	Коэффициент искажений напряжения	float	4 byte	R	%
0044H	YU	Напряжение	float	4 byte	R	В единицах В

Адрес	Позиции	Описание	Тип данных	Длина данных	Считывание и запись	Примечание
0045H		первой гармоники				
0046H 0047H	YI	Ток первой гармоники	float	4 byte	R	В единицах А
0048H 0049H	YP	Активная мощность первой гармоники	float	4 byte	R	В единицах кВт
004AH 004BH	YQ	Реактивная мощность первой гармоники	float	4 byte	R	В единицах кВАр
004CH 004DH	YS	Полная мощность первой гармоники	float	4 byte	R	В единицах кВА
004EH 004FH	YPF	Коэффициент мощности первой гармоники	float	4 byte	R	

12. Полный ассортимент

Артикул	Описание
50570DEK	Регулятор реактивной мощности 380В АС, 12 ступеней, КР-101
50571DEK	Регулятор реактивной мощности 380В АС, 10 ступеней, КР-101
50572DEK	Регулятор реактивной мощности 380В АС, 8 ступеней, КР-101
50573DEK	Регулятор реактивной мощности 380В АС, 6 ступеней, КР-101
50574DEK	Регулятор реактивной мощности 380В АС, 4 ступеней, КР-101
50575DEK	Регулятор реактивной мощности 220В АС, 12 ступеней, КР-101
50576DEK	Регулятор реактивной мощности 220В АС, 10 ступеней, КР-101
50577DEK	Регулятор реактивной мощности 220В АС, 8 ступеней, КР-101
50578DEK	Регулятор реактивной мощности 220В АС, 6 ступеней, КР-101
50579DEK	Регулятор реактивной мощности 220В АС, 4 ступеней, КР-101
50580DEK	Регулятор реактивной мощности 380B AC, 12 ступеней, RS-485, KP-101
50581DEK	Регулятор реактивной мощности 380B AC, 10 ступеней, RS-485, KP-101
50582DEK	Регулятор реактивной мощности 380B AC, 8 ступеней, RS-485, KP-101
50583DEK	Регулятор реактивной мощности 380B AC, 6 ступеней, RS-485, KP-101
50584DEK	Регулятор реактивной мощности 380B AC, 4 ступеней, RS-485, KP-101
50585DEK	Регулятор реактивной мощности 220B AC, 12 ступеней, RS-485, KP-101
50586DEK	Регулятор реактивной мощности 220B AC, 10 ступеней, RS-485, KP-101
50587DEK	Регулятор реактивной мощности 220B AC, 8 ступеней, RS-485, KP-101
50588DEK	Регулятор реактивной мощности 220B AC, 6 ступеней, RS-485, KP-101
50589DEK	Регулятор реактивной мощности 220B AC, 4 ступеней, RS-485, KP-101

13. Реализация

Регуляторы реактивной мощности являются непродовольственным товаром длительного пользования. Реализация осуществляется согласно установленным законодательством нормам и правилам для такого рода товаров.

14. Сведения об утилизации

Регуляторы серии КР-101 после окончания срока службы подлежат разборке и передаче

организациям, которые перерабатывают чёрные и цветные металлы. Опасных для здоровья людей и окружающей среды веществ и материалов в конструкции регулятора нет.

15. Комплект поставки

В комплект поставки регулятора реактивной мощности КР-101 входит:

- 1. Регулятор реактивной мощности 1шт.
- 2. Данное руководство по эксплуатации 1 шт.

16. Анализ и устранение неисправностей

Nº	Проявление неисправностей	Анализ причин неисправностей	Методы устранения
1		Ток выборки составляет менее 50мА или вторичная сторона трансформатора тока разомкнута.	Проверьте, разомкнуты ли трансформатор тока и вторичная цепь. Определите фактическое значение тока трансформатора. Если он превышает 50 мА, это указывает на внутреннюю неисправность контроллера.
		установки трансформатора тока для выборки, без первичного тока	Следует измерить общий ток, то есть ток выборки = ток нагрузки + ток конденсатора, то есть первичная линия конденсаторного шкафа подключена за трансформатором для выборки.
	продолжает колебаться, с переключением между опережением и запаздыванием.	нагрузок, таких как сварочный аппарат, прокатный стан, штамповочное оборудование, тяговое оборудование и т.д. 3. Электрическая нагрузка нестабильна, коэффициент	1. Выключите нагрузку двигателя и следите за отображением на дисплее контроллера. 2. Для быстрой скачкообразной нагрузки следует выбрать оборудование для динамической компенсации реактивной мощности. 3. Используйте режим кодирования для компенсации.
	часто.		1. Рекомендуется заменить конденсатор малой емкости. 2. Используйте режим кодирования для компенсации.
5	Коэффициент мощности меньше целевого, но конденсатор автоматически не	 Нагрузка невелика, и реактивная мощность, подлежащая компенсации, не 	1. Рекомендуется заменить конденсатор малой емкости. 2. Правильно установите коэффициент трансформации

	включается.	требованиям к включению.	трансформатора.
		2. Значение коэффициента	
		трансформации слишком мало	
		и установлено неправильно.	
	Контроллер имеет черный	Напряжение выборки не	1. Проверьте, в хорошем ли
	экран, без отображения.	подключено или контроллер	состоянии предохранитель.
6		неисправен.	2. Проверьте, есть ли сигнал
0			напряжения на клеммах 27 и 29
			(380 В / 220В), в противном
			случае замените контроллер.
	Контроллер поврежден	1. Поражение молнией и	Пожалуйста, выключите
	или зависает	другие аномальные условия.	питание и перезагрузите. При
7		2. Электромагнитные	повторном
		помехи.	появлении рекомендуется
			заменить изделие.

17. Гарантийные обязательства

В случае соблюдения пользователем условий эксплуатации, хранения, а также требований по надлежащему использованию продукта наша компания в течение 3 лет со дня продажи продукта производит его безвозмездный ремонт или замену в случае неисправности или невозможности штатной эксплуатации, возникших по причинам некачественного изготовления продукта.

По истечению гарантийного срока предоставляются платные услуги по ремонту продукта. Платный ремонт продукта в течение срока гарантийного обслуживания также производится при обнаружении неисправностей, возникших вследствие нижеуказанных обстоятельств:

- Ненадлежащая эксплуатация, техническое обслуживание или хранение.
- Самовольная модификация, ненадлежащий профилактический ремонт.
- Повреждение продукта вследствие неосторожного обращения в процессе транспортировки или монтажа.
- Землетрясение, пожар, удар молнии, ненормальное электрическое напряжение, вторичные бедствия и другие обстоятельства непреодолимой силы. При наличии вопросов, пожалуйста, свяжитесь с вашим дилером или отделом клиентского обслуживания данной компании.

В период гарантийных обязательств обращаться:

Уполномоченное изготовителем лицо:

АО «Систэм Электрик»

127018, Россия, город Москва, улица Двинцев, дом 12, корпус 1, этаж 6 пом I ком 15 Тел.: 8-800-200-64-46 (многоканальный),

Тел.: +7 (495) 777-99-90, Факс: +7 (495) 777-99-94

systeme.ru / dek.ru

E-mail: support@systeme.ru

OOO «Систэм Электрик БЛР» 220007, Беларусь, Минск, ул. Московская, 22-9 Тел.: +375-17-236-96-23, Факс: +375-17-236-95-23 systeme.ru / dek.ru				
18. Свидетельство о приемке				
Трансформаторы тока ТОП-0,66, ТШП-0,66 сооветствуют требованиям технического регламента ТР ТС 004/2011 «О безопасности низковольтного оборудования», ТР ТС 020/2011 «Электромагнитная совместимость технических средств».				
Завод-изготовитель «Delixi Electric Ltd»				
Адрес: КИТАЙ, Delixi High Tech Industrial Park, Liushi Town, Yueqing City, Zhejiang Province, 325604				
Дата изготовления:				
Штамп технического контроля изготовителя				

Уполномоченное изготовителем лицо:

19.	Блок для заметок