

Энергия. Технологии. Надежность.

Руководство Modbus

Активные фильтры гармоник и статические генераторы реактивной мощности торговой марки Systeme Electric

SystemeSine

Руководство Modbus

Версия: А02

Дата: 12.02.2025

Systeme Electric

АО «СИСТЭМ ЭЛЕКТРИК»

127018, Москва, ул. Двинцев, д.12, корп.1

Тел.: (495)777 99 90, Факс: (495)777 99 92,

Центр поддержки клиентов: (495) 777 99 88; 8-800-200-64-46

Оглавление

Глава І. Обзор	5
1.1 Описание	5
1.2 Область использования	5
1.3 Основной стандарт	5
Глава II. Протокол	6
Глава III. Тип данных	7
3.1 Целые числа	7
3.2 Числа с плавающей точкой	7
Глава IV. Режим связи	8
Глава V. Определение формата пакета/кадра уровня данных	۶9
5.1 Проверка	9
5.2 Поддерживаемые коды функций	9
5.3 Код функции 02	10
5.4 Код функций 03 и 04	11
5.5 Код функции 16	12
5.6 Код ответа с ошибкой	13
Глава VI. Информация о команде/ответе на запрос	14
6.1 Чтение состояния оборудования и сигналов тревог	14
6.2 Чтение аналоговых величин	18
6.3 Чтение данных графиков (кривых)	23
6.4 Чтение данных графиков (гистограмм)	24
6.5 Чтение информации производителя об оборудовании	25
6.6 Получение отслеживаемой информации о производителе	26
6.7 Чтение основных параметров	27

6.8 Чтение параметров (фазовые сдвиги)	30
6.9 Чтение параметров (уровни компенсации гармони	1 K) 33
6.10 Чтение параметров (режимы компенсации гармо	ник)35
6.11 Чтение параметров (инициализация не требуется	a)36
6.12 Задание параметров	37
6.13 Чтение записей	37
ава VII. Приложения	38
7.1 Описание режимов работы	38
7.2 Определение кода CRC	39
7.3 Описание связи с модулем DSP	40

Глава I. Обзор

1.1 Описание

MODBUS является протоколом прикладного уровня, широко используемым в промышленности, и является фактически промышленным стандартом.

Данный протокол описывает реализацию MODBUS для серии продуктов активных фильтров гармоник (АФГ) и статических генераторов реактивной мощности (СГРМ). Обмен происходит посредством ответа, хост инициирует запрос, оборудование производит запрос и отвечает.

Спецификации стандарта протокола связи MODBUS, не указанные в данном руководстве, описаны в спецификации стандарта протокола связи MODBUS RTU.

1.2 Область использования

Актуально для серии продуктов АФГ, СГРМ и применительно к модулю DSP и модулю мониторинга, а также для контроля взаимодействия с фоновыми данными программного обеспечения.

1.3 Основной стандарт

Спецификация стандарта протокола связи MODBUS RTU.

Глава II. Протокол

Базовый протокол

Асинхронный последовательный протокол UART.

Физический интерфейс

Двухпроводный интерфейс RS485.

Скорость передачи данных

Опционально: 9600 / 19200 / 38400 бит/с, по умолчанию – 19200 бит/с.

Формат данных

Режим передачи – асинхронный, полудуплексный; 1 бит, 8 бит данных, без проверки, 1 стоповый бит.

Глава III. Тип данных

3.1 Целые числа

Формат хранения целого числа представляет собой два байта: сначала передаются старшие байты D15~D8, а затем младшие D7~D0.

3.2 Числа с плавающей точкой

Формат хранения числа с плавающей точкой представляет собой четыре байта с использованием стандарта IEEE для 32-битного формата числа с плавающей точкой: сначала передаются старшие байты D31~D24, затем D23~D16, далее D15~D8, а затем младшие D7~D0 (стандартный формат языка "C").

Глава IV. Режим связи

Модуль мониторинга является хостом, а модуль DSP – ведомым устройством; другой вариант: фоновое программное обеспечение является хостом, а модуль мониторинга - ведомым устройством.

После передачи запроса в течение 200 мс происходит ответ от ведомого устройства. Если по истечении времени ответ не получен или получен ответ с ошибкой, то связь считается потерянной.

Глава V. Определение формата пакета/кадра уровня данных

5.1 Проверка

Используется 16-битная (2 байта) проверка кода CRC, при этом обрабатывается вся информация. Содержимое кода CRC получается в результате использования метода определения циклической длины содержимого сообщения, при этом само содержание прикрепляется в конце сообщения, добавляя сначала младшие байты, а затем старшие.

Более подробная информация по определению кода CRC представлена в приложении.

5.2 Поддерживаемые коды функций

Код функции	Описание
02	Чтение состояния оборудования, сигналы тревог.
03, 04	Чтение аналоговых данных, данных форм кривых (кривые, гистограммы) и информации производителя об оборудовании.
16	Задание устройству нескольких параметров

5.3 Код функции 02

Кадр запроса

Формат	Адрес	код функции	Состояние адреса старта на высоком уровне	Состояние адреса старта на низком уровне	Число состояний на высоком уровне	Число состояний на низком уровне	Проверка
Число байтов	1	1	1	1	1	1	2

Диапазон адресов составляет от 0 до 247, 0xff является широковещательным адресом, адрес по умолчанию – 1.

Кадр подтверждения

Формат	Адрес	Код	Число бай- тов	Данные	Проверка
Число байтов	1	1	1		2

Число байт = число состояний / 8 + (число состояний% 8 == 0?0: 1)

5.4 Код функций 03 и 04

Кадр запроса

Формат	Адрес	Код функции	Регистр адреса старта высок. уровня	Регистр адреса старта низкого уровня	Число регистров высок. уровня	Число регистров низкого уровня	Проверка
Число байтов	1	1	1	1	1	1	2

Кадр подтверждения

Формат	Адрес	Код функции	Число бай- тов	Данные	Проверка
Число	1	1	1		2
байтов					

Число байт = число регистров (x2).

5.5 Код функции 16

Кадр запроса

Формат	Адрес	Код функции	Регистр адреса старта высок. уровня	Регистр адреса старта низкого уровня	Число регистров высок.	Число регистров низ- кого уровня	Число байтов данных	Данные	Проверка	Формат
Число байтов	1	1	1	1	1	1	1		1	2

Кадр подтверждения

Формат	Адрес	Код функции	Регистр адреса старта высок. уровня	Регистр адреса старта низк.	Число регистров высок. уровня	Число регистров низкого уровня	Проверка
Число	1	1	1	1	1	1	2
байтов							

5.6 Код ответа с ошибкой

Формат	Адрес	Код функции	Код ошибки	Проверка
Число байтов	1	1	1	2

Код функции = код функции запроса кадра + 0х80.

- 01 Ошибка кода функции
- 02 Неверный адрес данных
- 03 Ошибка данных
- 04 Неисправность оборудования
- 05 Подтверждение
- 06 Оборудование занято

Глава VI. Информация о команде/ответе на запрос

6.1 Чтение состояния оборудования и сигналов тревог

Код функции = 02, адрес стартового состояния = 0х0000.

Адрес регистра	Число байтов	Наименование	Примечание	Атрибуты данных
0×0000	1	Инициализация	0=не требует инициализации, 1=требует инициализации	
0x0001	1	Рабочее состояние модуля	0=режим ожидания, 1= рабочий режим	
0x0002	1	Резерв		
0x0003	1	Резерв		
0x0004	1	Резерв		
0x0005	1	Резерв		
0x0006	1	Резерв		
0x0007	1	Резерв		
0x0008	1	Резерв		
0x0009	1	Резерв		
0x000A	1	Резерв		
0x000B	1	Резерв		
0x000C	1	Резерв		
0x000D	1	Резерв		
0x000E	1	Резерв		
0x000F	1	Резерв		
0x0010	1	Выход сухого контакта 1	0=возврат, 1=срабатывание	
0x0011	1	Выход сухого контакта 2	0=возврат, 1=срабатывание	
0x0012	1	Выход сухого контакта 3	0=возврат, 1=срабатывание	
0x0013	1	Выход сухого контакта 4	0=возврат, 1=срабатывание	

Адрес	Число			Атрибуты
регистра	байтов	Наименование	Примечание	данных
0x0014	1	Выход сухого	0=возврат,	
		контакта 5	1=срабатывание	
0x0015	1	Выход сухого	0=возврат,	
		контакта б	1=срабатывание	
0x0016	1	Выход сухого	0=возврат,	
		контакта 7	1=срабатывание 0=возврат,	
0x0017	1	Выход сухого	0–возврат, 1=срабатывание	
		контакта 8	1-срабатывание	
0x0018	1	Неисправность	0=норма,	
		молниезащиты	1=авария	
0x0019	1		0: нет ведущего	
0x001A	1	Параллельная работа	1: ведущий	
000174	'		2: ведомый	
0x001B	1	Резерв		
0x001C	1	Резерв		
0x001D	1	Резерв		
0x001E	1	Резерв		
0x001F	1	Резерв		
0x0020	1	Резерв		
0x0021	1	Резерв		
0x0022	1	Резерв		
0x0023	1	Резерв		
0x0024	1	Резерв		
0x0025	1	Резерв		
0x0026	1	Оффлайн статус модуля	0=норма, 1=авария	
0x0027	1	Аварийный статус	0=норма, 1=авария	
0x0028	1	КЗ инвертора	0=норма,	
5,,5025	'		1=авария	
0x0029	1	Превышение выходного тока	0=норма, 1=авария	
		Неисправность	<u> </u>	
0x002A	1	вспомогательного	0=норма, 1=авария	
	1	источника питания	0=норма,	
0x002B	1	Отказ предохранителя	1=авария	
0x002C	1	Неисправность вентиляции	0=норма, 1=авария	

Адрес регистра	Число байтов	Наименование	Примечание	Атрибуты данных
0x002D	1	Перегрев инвертора	0=норма, 1=авария	
0x002E	1	Ошибка Ктт	0=норма, 1=авария	
0x002F	1	Перегрузка инвертора	0=норма, 1=авария	
0x0030	1	Неисправность системы	0=норма, 1=авария	
0x0031	1	Недопустимая частота сети	0=норма, 1=авария	
0x0032	1	Недопустимое напряжение сети	0=норма, 1=авария	
0x0033	1	Ошибка подключения	0=норма, 1=авария	
0x0034	1	Несовместимость прошивки	0=норма, 1=авария	
0x0035	1	Ошибка настройки контроллера	0=норма, 1=авария	
0x0036	1	Сбой настройки параметра мониторинга	0=норма, 1=авария	
0x0037	1	Неверное значение мощности	0=норма, 1=авария	
0x0038	1	Аварийный останов	0=норма, 1=авария	
0x0039	1	Некорректное подключение	0=норма, 1=авария	
0x003A	1	Ошибка калибровки TT	0=норма, 1=авария	
0x003B	1	Неисправность модуля связи	0=норма, 1=авария	
0x003C	1	Неисправность прошивки модуля	0=норма, 1=авария	
0x003D	1	Перегрузка конденсатора 0=норма, 1=авария		
0x003E	1	Неисправность плавного пуска	0=норма, 1=авария	
0x003F	1	Ошибка синхронизации	0=норма, 1=авария	
0x0040	1	Ошибка напряжения сети	0=норма, 1=авария	
0x0041	1	Неисправность датчиков Холла	0=норма, 1=авария	
0x0042	1	Неисправность шины	0=норма, 1=авария	

Адрес регистра	Число байтов	Наименование	Примечание	Атрибуты данных
0x0043	1	Некорректная работа переключателя	0=норма, 1=авария	
0x0044	1	Сбой электрического переключения	0=норма, 1=авария	
0x0045	1	Сбой электрического отключения	0=норма, 1=авария	
0x0046	1	Несбалансированный выходной ток	0=норма, 1=авария	
0x0047	1	Гармоническое превышение	0=норма, 1=авария	
0x0048	1	Неисправность системы охлаждения	0=норма, 1=авария	
0x0049	1	Неисправность связи RS422	0=норма, 1=авария	
0x004A	1	Неисправность связи CAN	0=норма, 1=авария	
0x004B	1	Сдвиг фазы по входу	0=норма, 1=авария	
0x004C	1	Повышенное/пониженное напряжение шины	0=норма, 1=авария	
0x004D	1	Повреждение главной цепи	0=норма, 1=авария	
0x004E	1	Некорректное подключение TT	0=норма, 1=авария	
0x004F	1	 Недопустимое нулевое напряжение	0=норма, 1=авария	

6.2 Чтение аналоговых величин

Код функции = 03, 04, адрес стартового регистра = 0х0000.

Адрес регистра	Число байтов	Наименование	Примечание	Атрибуты данных
0x0000	4	Ток нагрузки фазы А	А	
0x0002	4	Ток нагрузки фазы В	Α	
0x0004	4	Ток нагрузки фазы С	Α	
0x0006	4	THDI нагрузки фазы А	%	
0x0008	4	THDI нагрузки фазы В	%	
0x000A	4	THDI нагрузки фазы С	%	
0x000C	4	Коэффициент мощности нагрузки фазы А		
0x000E	4	Коэффициент мощности нагрузки фазы В		
0x0010	4	Коэффициент мощности нагрузки фазы С		
0x0012	4	Ток индуктора фазы А	Α	
0x0014	4	Ток индуктора фазы В	Α	
0x0016	4	Ток индуктора фазы С	Α	
0x0018	4	Полная мощность сети по фазе А	кВА	
0x001A	4	Полная мощность сети по фазе В	кВА	
0x001C	4	Полная мощность сети по фазе С кВА		
0x001E	4	Активная мощность сети по фазе А	кВт	
0x0020	4	Активная мощность сети по фазе В	кВт	
0x0022	4	Активная мощность сети по фазе С	кВт	
0x0024	4	Ток нейтрали сети	Α	
0x0026	4	Ток нейтрали нагрузки	Α	
0x0028	4	Ток сети фазы А	Α	
0x002A	4	Ток сети фазы В	А	
0x002C	4	Ток сети фазы С А		
0x002E	4	ТНDI сети фазы А %		
0x0030	4	ТНDI сети фазы В %		
0x0032	4	ТНDI сети фазы С %		
0x0034	4	Коэффициент мощности сети фазы А		
0x0036	4	Коэффициент мощности сети фазы В		

Адрес регистра	Число байтов	Наименование	Примечание	Атрибуты данных
0x0038	4	Коэффициент мощности сети фазы С		
0x003A	4	Температура IGBT фазы A	°C	
0x003C	4	Температура IGBT фазы B	°C	
0x003E	4	Температура IGBT фазы C	°C	
0x0040	4	Реактивная мощность сети по фазе А	кВАр	
0x0042	4	Реактивная мощность сети по фазе В	кВАр	
0x0044	4	Реактивная мощность сети по фазе C	кВАр	
0x0046	4	COSPHI сети фазы A		
0x0048	4	COSPHI сети фазы В		
0x004A	4	COSPHI сети фазы С		
0x004C	4	Реактивная мощность нагрузки по фазе А	кВАр	
0x004E	4	Реактивная мощность нагрузки по фазе В	кВАр	
0x0050	4	Реактивная мощность нагрузки по фазе С	кВАр	
0x0052	4	Ток компенсации фазы А	Α	
0x0054	4	Ток компенсации фазы В	Α	
0x0056	4	Ток компенсации фазы С	Α	
0x0058	4	Уровень загрузки модуля по фазе А	%	
0x005A	4	Уровень загрузки модуля по фазе B	%	
0x005C	4	Уровень загрузки модуля по фазе С	%	
0x005E	4	Температура входа модуля	°C	
0x0060	4	Температура выхода модуля	°C	
0x0062	4	Температура 6 (резерв)	°C	
0x0064	4	Полная мощность нагрузки по фазе А	кВА	
0x0066	4	Полная мощность нагрузки по фазе В	кВА	
0x0068	4	Полная мощность нагрузки по фазе С	кВА	
0x006A	4	Активная мощность нагрузки по фазе А	кВт	
0x006C	4	Активная мощность нагрузки по фазе В	кВт	
0x006E	4	Активная мощность нагрузки по фазе С	кВт	
0x0070	4	COSPHI нагрузки фазы A		
0x0072	4	COSPHI нагрузки фазы В		
0x0074	4	COSPHI нагрузки фазы C		
0x0076	4	Напряжение сети фазы А	В	

Адрес регистра	Число байтов	Наименование	Примечание	Атрибуты данных
0x0078	4	Напряжение сети фазы В	В	
0x007A	4	Напряжение сети фазы С	В	
0x007C	4	Частота сети фазы А	Гц	
0x007E	4	Частота сети фазы В	Гц	
0x0080	4	Частота сети фазы С	Гц	
0x0082	4	THDU сети фазы A	%	
0x0084	4	THDU сети фазы В	%	
0x0086	4	THDU сети фазы С	%	
0x0088	4	Переменная отладки 1		
0x008A	4	Переменная отладки 2		
0x008C	4	Переменная отладки 3		
0x008E	4	Переменная отладки 4		
0x0090	4	Переменная отладки 5		
0x0092	4	Переменная отладки 6		
0x0094	4	Время работы системы	сек.	
0x0096	4	Время работы при нагрузке более 50%	сек.	
0x0098	4	Время работы при нагрузке менее 50%	сек.	
0x009A	4	Напряжение шины пост. тока (+)	В	
0x009C	4	Напряжение шины пост. тока (-)	В	
0x009E	4	Температура индуктора	°C	
0x00A0	4	Емкостной ток	0.01A	
0x00A4	4	Коэффициент трансформации ТТ	0=норма, 1=авария Трехфазная система использует двоичное кодирование A+B*2+C*4	

Адрес Числ регистра байт		Примечание	Атрибуты данных
0x00A6 4	Проверка подключения TT фазы A (1)	0x0: норма 0x1: A+/NC 0x2: A+/A- 0x3: A+/B+ 0x4: A+/B- 0x5: A+/C- 0x7: A-/A+ 0x8: A-/NC 0x9: A-/B+ 0x10: A-/B- 0x11: A-/C- 0x13: B+/A+ 0x14: B+/A- 0x15: B+/NC 0x16: B+/B- 0x17: B+/C+ 0x18: B+/C- 0x19: B-/A+ 0x20: B-/A- 0x21: B-/B+ 0x22: B-/NC 0x23: B-/C- 0x25: C+/A+ 0x26: C+/A- 0x27: C+/B+ 0x29: C+/NC 0x30: C+/C- 0x31: C-/A+ 0x32: C-/A- 0x33: C-/B+	

Адрес регистра	Число байтов	Наименование	Примечание	Атрибуты данных
			0x35: C-/C+ 0x36: C-/NC	
0x00A8	4	Проверка подключения TT фазы A (2)	По аналогии с 0x00A6	
0x00AA	4	Проверка подключения TT фазы B (1)	По аналогии с 0x00A6	
0x00AC	4	Проверка подключения TT фазы B (2)	По аналогии с 0x00A6	
0x00AE	4	Проверка подключения TT фазы C (1)	По аналогии с 0x00A6	
0x00B0	4	Проверка подключения TT фазы C (2)	По аналогии с 0x00A6	
0x00B2	4	Рекомендация по переподключению ТТ фазы А	0x0: нет 0x1: A+ 0x2: A- 0x3: B+ 0x4: B- 0x5:C+ 0x6: C- 0x7: справочное руководство	
0x00B4	4	Рекомендация по переподключению ТТ фазы В	По аналогии с 0x00B2	
0x00B6	4	Рекомендация по переподключению ТТ фазы С	По аналогии с 0x00B2	

6.3 Чтение данных графиков (кривых)

Код функции = 03, 04, адрес стартового регистра = 0х0500.

Кривая состоит из двух наборов данных по 128 точек: байта со значением точки и 128 точек для построения кривой. Данные передаются в порядке от младшего к старшему, где первый байт представляет собой данные первой точки и т.д.

Адрес регистра	Число байтов	Наименование	Примечание	Атрибуты данных
0x0500	128	Кривая напряжения сети фазы А		
0x0540	128	Кривая напряжения сети фазы В		
0x0580	128	Кривая напряжения сети фазы С		
0x05C0	128	Кривая тока нагрузки фазы А		
0x0600	128	Кривая тока нагрузки фазы В		
0x0640	128	Кривая тока нагрузки фазы С		
0x0680	128	Кривая тока компенсации фазы А		
0x06C0	128	Кривая тока компенсации фазы В		
0x0700	128	Кривая тока компенсации фазы С		
0x0740	128	Кривая тока сети фазы А		
0x0780	128	Кривая тока сети фазы В	Кривая тока сети фазы В	
0x07C0	128	Кривая тока сети фазы С	·	

6.4 Чтение данных графиков (гистограмм)

Код функции = 03, 04, адрес стартового регистра = 0х0В00.

Гистограмма состоит из 60 точек, причем байт, представляющий собой значение точки, передается только один раз. Данные передаются в порядке от младшего к старшему, где первый байт представляет собой данные первой точки и т.д.

Адрес регистра	Число байтов	Наименование	Примечание	Атрибуты данных
0x0B00	80	Гистограмма THDU сети фазы A		
0x0B28	80	Гистограмма THDU сети фазы B		
0x0B50	80	Гистограмма THDU сети фазы C		
0x0B78	80	Гистограмма THDI нагрузки фазы А		
0x0BA0	80	Гистограмма THDI нагрузки фазы B		
0x0BC8	80	Гистограмма THDI нагрузки фазы C		
0x0BF0	80	Гистограмма THDI сети фазы A		
0x0C18	80	Гистограмма THDI сети фазы В		
0x0C40	80	Гистограмма THDI сети фазы С		
0x0B00	80	Гистограмма THDU сети фазы A		
0x0B28	80	Гистограмма THDU сети фазы В		
0x0B50	80	Гистограмма THDU сети фазы C		

6.5 Чтение информации производителя об оборудовании

Код функции = 03, 04, адрес стартового регистра = 0х1000.

Адрес регистра	Число байтов	Наименование	Примечание
0×1000	2	Версия протокола	Десятичное представление. Например, 100, означает, что версия протокола - V100.
0x1001	2	Версия прошивки	Десятичное число, 12 бит определяют основную версию, а остальные 4 бита определяют минорную версию прошивки. Например, 0x0641 означает, что основная версия 100, а минорная версия 01.
0x1002	2	Адрес устройства	1~247
0x1003	2	Резерв	

6.6 Получение отслеживаемой информации о производителе

Код функции = 03, 04, адрес стартового регистра = 0х1200.

Адрес регистра	Число байтов	Наименование	Примечание
0x1200	2	Версия протокола	Десятичное представление. Например, 100, означает, что версия протокола - V100.
0x1201	2	Версия прошивки	Десятичное число, 12 бит определяют основную версию, а остальные 4 бита определяют минорную версию прошивки. Например, 0x0641 означает, что основная версия 100, а минорная версия 01.
0x1202	2	Адрес устройства	1~247
0x1203	2	Резерв	
0x1204	2	Вход сухого контакта	Определяет состояние входа 1 относительно точки 2 1: Срабатывание 0: Возврат
0x1205	2	Выход сухого контакт	Определяет состояние контакта 1 относительно точки контакта 2 1: Срабатывание 0: Возврат

6.7 Чтение основных параметров

Все настраиваемые параметры являются системными. Код функции = 03, 04, адрес стартового регистра = 0x2000.

Адрес регистра	Число байтов	Наименование	Примечание
		Инициали:	зация
0x2000	4	Количество ведомых модулей	[110], по умолчанию 1
0x2002	4	Коэффициент трансформации TT	[0,30000], по умолчанию 300 (при перезапуске модуля DSP)
0x2004	4	Коэффициент трансформации ТН	[0. 1,75], по умолчанию 1.0 (при перезапуске модуля DSP)
0x2006	4	Общая мощность	[10,30000], по умолчанию 25 (при перезапуске модуля DSP)
0x2008	4	Резерв	
0x200A	4	Резерв	
0x200C	4	Уровень компенсации гармоник	[0.01.1], по умолчанию 1
0x200E	4	Целевой коэффициент мощности	[-1,1], по умолчанию 1
0x2010	4	Резерв	
0x2012	4	Резерв	
0x2014	4	Резерв	
0x2016	4	Резерв	
0x2018	4	Резерв	
0x201A	4	Резерв	
0x201C	4	Режим работы	См. приложения, по умолчанию 0 (компенсация гармоник)
0x201E	4	Режим запуска	0: Автоматический режим 1: Ручной режим По умолчанию 1

Адрес регистра	Число байтов	Наименование	Примечание	
0x2020	4	Режим компенсации	0= адаптивный, 1=последовательный, 2= мгновенного регулирования PM, по умолчанию 1 (при перезапуске модуля DSP)	
0x2022	4	Расположение TT	0: сеть, 1: нагрузка, по умолчанию 1 (при перезапуске модуля DSP)	
0x2024	4	Конфигурация сети	0: 3-фазный 4-проводный, 1: 3-фазный 3-проводный. По умолчанию 0 (при перезапуске модуля DSP)	
0x2026	4	Резерв		
0x2028	4	Подключение TT	0: последовательное, 1: параллельное. по умолчанию 0 (при перезапуске модуля DSP)	
0x202A	4	Резерв		
0x202C	4	Ток индуктора	0: емкостной, 1: индуктивный, по умолчанию 0 (при перезапуске модуля DSP)	
0x202E	4	Входная частота	0:50Гц 1:60Гц. По умолчанию 50Гц	
0x2030	4	ФАПЧ	0: Включ. 1: Отключ. По умолчанию 1	
0x2032	4	Отклонение входного тока	0: Включ. 1: Отключ. По умолчанию 1	
0x2034	4	Резерв		
0x2036	4	Температурное ограничение	0: Включ. 1: Отключ. По умолчанию 1	
0x2038	4	Емкостная компенсация	0: Включ. 1: Отключ. По умолчанию 1	
0x203A	4	Резерв		
0x203C	4	Резерв		

Адрес	Число			
регистра	байтов	Наименование	Примечание	
ранна	3033			
0x203E	4	Регулировка	0: Включ.	
		напряжения сети	1: Отключ.	
0.0040		D	По умолчанию 1	
0x2040	4	Резерв		
0x2042	4	Резерв		
0x2044	4	Резерв		
0x2046	4	Целевое напряжение	[100В~700В], один десятичный знак, по умолчанию 230В	
0x2048	4	Резерв		
0x204A	4	Резерв		
0x204C	4	Резерв		
0x204E	4	Резерв		
0x2050	4	Резерв		
0x2052	4	Резерв		
0x2054	4	Уставка постоянной	[-3000.0,3000.0],	
		реактивной	по умолчанию 0, один десятичный знак.	
02056	4	мощности	-20%~20%,	
0x2056	4	Уставка Имакс (%)	-20%~20%, по умолчанию 7% (факт. [0,20])	
0x2058	4	Уставка Имин (%)	-20%~20%,	
0,2036	4	S CTUBRU OMVITT (70)	по умолчанию -10% (факт. [-20,0])	
0x205A	4	Резерв		
0x205C	4	Предел THDU (%)	По умолчанию 0 [0,50]	
0x205E	4	Предел небаланса (%)	По умолчанию 0 [0,1]	
0x2060	4	Управляемая реактивная мощность (РМ контр.)	[-3000.0,3000.0], один десятичный знак. По умолчанию 0	
0x2062	4	Резерв		
0x2064	4	Резерв		
0x2066	4	Резерв		
0x2068	4	Резерв		
0x206A	4	Уставка режима	[0.0,100.0], один десятичный знак.	
		отключения при низкой нагрузке	(при нулевом значении не учитывается) По умолчанию 0.	
0x206C	4	Резерв		
0x206E	4	Резерв		

6.8 Чтение параметров (фазовые сдвиги)

Код функции = 03, 04, адрес стартового регистра = 0х2500.

Адрес регистра	Число байтов	Наименование	Примечание
		Инициализаци	Я
0x2500	4	Фазовый сдвиг основной частоты	[-40,40], с точностью 0.1 градуса. По умолчанию 0.
0x2502	4	Фазовый сдвиг 3 гармоники	[-180,180] с точностью 0.1 градуса. По умолчанию 0.
0x2504	4	Фазовый сдвиг 5 гармоники	[-180,180] с точностью 0.1 градуса. По умолчанию 0.
0x2506	4	Фазовый сдвиг 7 гармоники	[-180,180] с точностью 0.1 градуса. По умолчанию 0.
0x2508	4	Фазовый сдвиг 9 гармоники	[-180,180] с точностью 0.1 градуса. По умолчанию 0.
0x250A	4	Фазовый сдвиг 11 гармоники	[-180,180] с точностью 0.1 градуса. По умолчанию 0.
0x250C	4	Фазовый сдвиг 13 гармоники	[-180,180] с точностью 0.1 градуса. По умолчанию 0.
0x250E	4	Фазовый сдвиг фазы А	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2510	4	Фазовый сдвиг фазы B	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2512	4	Фазовый сдвиг фазы С	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2514	4	Фазовый сдвиг 2 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2516	4	Фазовый сдвиг 4 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2518	4	Фазовый сдвиг 6 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x251A	4	Фазовый сдвиг 8 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x251C	4	Фазовый сдвиг 10 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x251E	4	Фазовый сдвиг 12 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2520	4	Фазовый сдвиг 14 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.

Адрес регистра	Число байтов	Наименование	Примечание
0x2522	4	Фазовый сдвиг 15 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2524	4	Фазовый сдвиг 16 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2526	4	Фазовый сдвиг 17 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2528	4	Фазовый сдвиг 18 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x252A	4	Фазовый сдвиг 19 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x252C	4	Фазовый сдвиг 20 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x252E	4	Фазовый сдвиг 21 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2530	4	Фазовый сдвиг 22 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2532	4	Фазовый сдвиг 23 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2534	4	Фазовый сдвиг 24 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2536	4	Фазовый сдвиг 25 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2538	4	Фазовый сдвиг 26 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x253A	4	Фазовый сдвиг 27 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x253C	4	Фазовый сдвиг 28 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x253E	4	Фазовый сдвиг 29 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2540	4	Фазовый сдвиг 30 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2542	4	Фазовый сдвиг 31 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2544	4	Фазовый сдвиг 32 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2546	4	Фазовый сдвиг 33 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2548	4	Фазовый сдвиг 34 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x254A	4	Фазовый сдвиг 35 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.

Адрес регистра	Число байтов	Наименование	Примечание
0x254C	4	Фазовый сдвиг 36 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x254E	4	Фазовый сдвиг 37 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2550	4	Фазовый сдвиг 38 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2552	4	Фазовый сдвиг 39 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2554	4	Фазовый сдвиг 40 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2556	4	Фазовый сдвиг 41 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2558	4	Фазовый сдвиг 42 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x255A	4	Фазовый сдвиг 43 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x255C	4	Фазовый сдвиг 44 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x255E	4	Фазовый сдвиг 45 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2560	4	Фазовый сдвиг 46 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2562	4	Фазовый сдвиг 47 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2564	4	Фазовый сдвиг 48 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2566	4	Фазовый сдвиг 49 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.
0x2568	4	Фазовый сдвиг 50 гармоники	[-180,180], с точностью 0.01 градуса. По умолчанию 0.

6.9 Чтение параметров (уровни компенсации гармоник)

Код функции = 03, 04, адрес стартового регистра = 0х2А00.

Адрес регистра	Число байтов	Наименование	Примечание
		Инициализация	
0x2A00	4	Уровень компенсации 2 гармоники	[0,110], по умолчанию 0.
0x2A02	4	Уровень компенсации 3 гармоники	[0,110], по умолчанию 0.
0x2A04	4	Уровень компенсации 4 гармоники	[0,110], по умолчанию 0.
0x2A06	4	Уровень компенсации 5 гармоники	[0,110], по умолчанию 0.
0x2A08	4	Уровень компенсации 6 гармоники	[0,110], по умолчанию 0.
0x2A0A	4	Уровень компенсации 7 гармоники	[0,110], по умолчанию 0.
0x2A0C	4	Уровень компенсации 8 гармоники	[0,110], по умолчанию 0.
0x2A0E	4	Уровень компенсации 9 гармоники	[0,110], по умолчанию 0.
0x2A10	4	Уровень компенсации 10 гармоники	[0,110], по умолчанию 0.
0x2A12	4	Уровень компенсации 11 гармоники	[0,110], по умолчанию 0.
0x2A14	4	Уровень компенсации 12 гармоники	[0,110], по умолчанию 0.
0x2A16	4	Уровень компенсации 13 гармоники	[0,110], по умолчанию 0.
0x2A18	4	Уровень компенсации 14 гармоники	[0,110], по умолчанию 0.
0x2A1A	4	Уровень компенсации 15 гармоники	[0,110], по умолчанию 0.
0x2A1C	4	Уровень компенсации 16 гармоники	[0,110], по умолчанию 0.
0x2A1E	4	Уровень компенсации 17 гармоники	[0,110], по умолчанию 0.
0x2A20	4	Уровень компенсации 18 гармоники	[0,110], по умолчанию 0.
0x2A22	4	Уровень компенсации 19 гармоники	[0,110], по умолчанию 0.
0x2A24	4	Уровень компенсации 20 гармоники	[0,110], по умолчанию 0.
0x2A26	4	Уровень компенсации 21 гармоники	[0,110], по умолчанию 0.
0x2A28	4	Уровень компенсации 22 гармоники	[0,110], по умолчанию 0.
0x2A2A	4	Уровень компенсации 23 гармоники	[0,110], по умолчанию 0.
0x2A2C	4	Уровень компенсации 24 гармоники	[0,110], по умолчанию 0.
0x2A2E	4	Уровень компенсации 25 гармоники	[0,110], по умолчанию 0.
0x2A30	4	Уровень компенсации 26 гармоники	[0,110], по умолчанию 0.
0x2A32	4	Уровень компенсации 27 гармоники	[0,110], по умолчанию 0.
0x2A34	4	Уровень компенсации 28 гармоники	[0,110], по умолчанию 0.
0x2A36	4	Уровень компенсации 29 гармоники	[0,110], по умолчанию 0.
0x2A38	4	Уровень компенсации 30 гармоники	[0,110], по умолчанию 0.

Адрес регистра	Число байтов	Наименование	Примечание
0x2A3A	4	Уровень компенсации 31 гармоники	[0,110], по умолчанию 0.
0x2A3C	4	Уровень компенсации 32 гармоники	[0,110], по умолчанию 0.
0x2A3E	4	Уровень компенсации 33 гармоники	[0,110], по умолчанию 0.
0x2A40	4	Уровень компенсации 34 гармоники	[0,110], по умолчанию 0.
0x2A42	4	Уровень компенсации 35 гармоники	[0,110], по умолчанию 0.
0x2A44	4	Уровень компенсации 36 гармоники	[0,110], по умолчанию 0.
0x2A46	4	Уровень компенсации 37 гармоники	[0,110], по умолчанию 0.
0x2A48	4	Уровень компенсации 38 гармоники	[0,110], по умолчанию 0.
0x2A4A	4	Уровень компенсации 39 гармоники	[0,110], по умолчанию 0.
0x2A4C	4	Уровень компенсации 40 гармоники	[0,110], по умолчанию 0.
0x2A4E	4	Уровень компенсации 41 гармоники	[0,110], по умолчанию 0.
0x2A50	4	Уровень компенсации 42 гармоники	[0,110], по умолчанию 0.
0x2A52	4	Уровень компенсации 43 гармоники	[0,110], по умолчанию 0.
0x2A54	4	Уровень компенсации 44 гармоники	[0,110], по умолчанию 0.
0x2A56	4	Уровень компенсации 45 гармоники	[0,110], по умолчанию 0.
0x2A58	4	Уровень компенсации 46 гармоники	[0,110], по умолчанию 0.
0x2A5A	4	Уровень компенсации 47 гармоники	[0,110], по умолчанию 0.
0x2A5C	4	Уровень компенсации 48 гармоники	[0,110], по умолчанию 0.
0x2A5E	4	Уровень компенсации 49 гармоники	[0,110], по умолчанию 0.
0x2A60	4	Уровень компенсации 50 гармоники	[0,110], по умолчанию 0.
0x2A62	4	Резерв	
0x2A64	4	Резерв	
0x2A66	4	Резерв	
0x2A68	4	Резерв	
0x2A6A	4	Резерв	
0x2A6C	4	Резерв	
0x2A6E	4	Резерв	
0x2A70	4	Резерв	
0x2A72	4	Резерв	
0x2A74	4	Резерв	
0x2A76	4	Резерв	

6.10 Чтение параметров (режимы компенсации гармоник)

Код функции = 03, 04, адрес стартового регистра = 0х2А00.

Адрес регистра	Число байтов	Наименование	Примечание
		Инициализация	
0x3200	4	Режим компенсации 1 (гармоники 2~24 порядка)	По умолчанию 0x7FFFFF.
0x3202	4	Режим компенсации 1 (гармоники 25~47 порядка)	По умолчанию 0x7FFFFF.
0x3204	4	Режим компенсации 1 (гармоники 48~61 порядка)	По умолчанию 0х7.
0x3206	4	Режим компенсации 2 (гармоники 2~24 порядка)	По умолчанию 0.
0x3208	4	Режим компенсации 2 (гармоники 25~47 порядка)	По умолчанию 0.
0x320A	4	Режим компенсации 2 (гармоники 48~61 порядка)	По умолчанию 0.
0x320C	4	Режим компенсации 3 (гармоники 2~24 порядка)	По умолчанию 0.
0x320E	4	Режим компенсации 3 (гармоники 25~47 порядка)	По умолчанию 0.
0x3210	4	Режим компенсации 3 (гармоники 48~61 порядка)	По умолчанию 0.

6.11 Чтение параметров (инициализация не требуется)

Код функции = 03, 04, адрес стартового регистра = 0x2C00, адрес конечного 0x30ff.

Адрес регистра	Число байтов	Наименование	Примечание		
		Без инициализации			
0x2C00	4	Калибровка входного напряжения фазы А	Больше 0.		
0x2C02	4	Калибровка входного напряжения фазы В	Больше 0.		
0x2C04	4	Калибровка входного напряжения фазы С	Больше 0.		
0x2C06	4	Резерв	Больше 0.		
0x2C08	4	Калибровка тока индуктора фазы А	Больше 0.		
0x2C0A	4	Калибровка тока индуктора фазы В	Больше 0.		
0x2C0C	4	Калибровка тока индуктора фазы С	Больше 0.		
0x2C0E	4	Калибровка TT фазы A	Больше 0.		
0x2C10	4	Калибровка TT фазы В	Больше 0.		
0x2C12	4	Калибровка ТТ фазы С	Больше 0.		
0x2C14	4	Калибровка тока инвертора фазы А	Больше 0.		
0x2C16	4	Калибровка тока инвертора фазы В	Больше 0.		
0x2C18	4	Калибровка тока инвертора фазы С	Больше 0.		
0x2C1A	4	Сброс аварии	Выпуск 1		
0x2C1C	4	Vaguénopya TT	Выпуск 1		
UXZCTC	4	Калибровка TT	(при перезапуске модуля DSP)		
0x2C1E	4	Пуск	Выпуск 1		
0x2C20	4	Останов	Выпуск 1		
0x2C22	4	Резерв			
0x2C24	4	Резерв			
0x2C26	4	Резерв			

6.12 Задание параметров

Поскольку параметры имеют формат с плавающей точкой используется 4 байта. Следовательно, для задания одного или нескольких параметров (включая общие параметры, параметры фазовых смещений, параметры компенсации гармоник и параметры без инициализации) используется код функции 16.

6.13 Чтение записей

Код функции = 03, 04, адрес стартового регистра = 0xf000.

Глава VII. Приложения

7.1 Описание режимов работы

Для каждого устройства существует возможность выбора нескольких режимов работы, включая Режим компенсации гармоник, Режимы комбинации гармоник (Г), реактивной мощности (Р), балансирования (Б), Режим теста и др. Пользователю доступно право выбора необходимого режима работы в зависимости от фактического состояния сети или нагрузки на объекте.

Тип устройства	Режим работы
АФГ	0: Г 1: Г+Р 2: Г+Р+Б 3: Тест 4: Г+Б+Р 5: Г+Б 6: Р+Г 7: Р+Г+Б 8: Р+Б+Г 9: Б+Г 10: Б+Г+Р 11: Б+Р+Г
СГРМ	1: Р 2: Р + Б 3: Тест 4: Б + Р 5: Б

7.2 Определение кода CRC

Входной параметр: указатель массива буфера для определения CRC. Длина данных, которую необходимо определить. Возвращаемое значение: значение CRC.

```
unsigned short calculateCRC 16(const unsigned char * buffer, int length)
 {
          unsigned short
                              InitCrc = 0xffff;
          unsigned short Crc = 0;
          int i = 0;
          int j = 0;
          if ((buffer == 0) | | (length <= 0))
           {
               return 0;
          }
          for (i =0; i <length; i ++)
           {
               InitCrc ^= buffer [i];
               for (j =0; j <8; j++)
               {
                    Crc = I nitCrc;
                    InitCrc >>= 1;
                    if (Crc &0x0001)
                         InitCrc ^= 0xa001;
               }
          }
          return InitCrc;
}
```


7.3 Описание связи с модулем DSP

- Количество симуляций не более 50 за кадр. Если последний кадр имеет значение менее 50, можно использовать фактическое оставшееся число.
- Поддерживается установка одного или нескольких параметров, стартовый адрес должен быть указан, до 60 за кадр, в соответствии с классификацией основного параметра, параметра фазового смещения, гармонической компенсации, параметра без инициализации. Если последний кадр имеет данное значение менее 60, можно задать фактическое оставшееся число.
- Данные гистограммы, чтение всех трех фаз одновременно.
- Скорость передачи данных для модуля имеет значение 19200 бит/с.

Энергия. Технологии. Надежность.

Systeme Electric AO «СИСТЭМ ЭЛЕКТРИК» 127018, Москва, ул. Двинцев, д.12, корп.1

Тел.: (495)777 99 90, Факс: (495)777 99 92,

Центр поддержки клиентов: (495) 777 99 88; 8-800-200-64-46