

КОНТРОЛЛЕРЫ ЛОГИЧЕСКИЕ ПРОГРАММИРУЕМЫЕ OPTILOGIC L

Модуль расширения шины ВЕ-1

РОССИЯ, 305000, Г. КУРСК, УЛ. ЛУНАЧАРСКОГО, 8 WWW.KEAZ.RU

Содержание

1	ОПИСАНИЕ И РАБОТА	4
2	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	10
3	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	12
4	ТЕКУЩИЙ РЕМОНТ	12
5	ХРАНЕНИЕ	13
6	ТРАНСПОРТИРОВАНИЕ	13
7	УТИЛИЗАЦИЯ	13

Настоящее руководство по эксплуатации содержит информацию, необходимую для правильной и безопасной эксплуатации модуля расширения шины BE-1, входящего в состав линейки контроллеров логических программируемых серии OptiLogicL (далее по тексту ПЛК).

Основная область применения ПЛК OptiLogicL – автоматизация технологических процессов на объектах различных отраслей промышленности, а также инженерных систем зданий и сооружений.

ПЛК OptiLogicL соответствует ГОСТ IEC 61131-2-2012.

ПЛК OptiLogicL предназначены ДЛЯ использования взрывоопасной 30НЫ. Связь С электрооборудованием, расположенным взрывоопасной зоне, осуществляется во требованиям взрывозащиту конкретных видов, на согласно комплекту государственных стандартов взрывозащищенное на оборудование.

К работе с изделием допускаются лица, изучившие настоящее руководство и имеющие квалификационную группу по электробезопасности не ниже 3.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

Модуль расширения шины BE-1 предназначен для использования в системах автоматизированного управления технологическим оборудованием в энергетике, на транспорте, в различных областях промышленности, жилищно-коммунального и сельского хозяйства.

Модуль используется для подключения удаленных модулей ввода/вывода к шине расширения CPU или подключения модулей ввода/вывода к любым ПЛК по интерфейсу RS-485 с протоколом Modbus RTU.

Модуль предназначен для непрерывного необслуживаемого режима работы.

1.2 Технические характеристики

1.2.1 Конструкция, обозначение, размеры и масса модуля.

Внешний вид и размеры модуля ВЕ-1 показаны на рисунке 1.

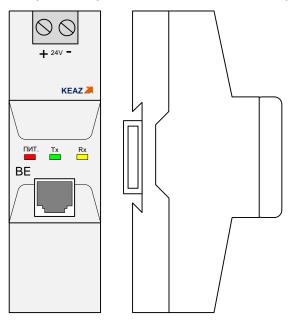


Рисунок 1 – Внешний вид и размеры модуля

Модуль выполнен в пластиковом корпусе, предназначенном для установки на DIN-рейку типа ТН35-7,5 (35 мм х 7,5 мм) или на плоскую панель.

Внимание! Установка модуля на рейку типа ТН35-15 (35 мм х 15 мм) не допускается!

Модуль имеет степень защиты корпуса по ГОСТ 14254-2015 не менее – IP20.

Модуль имеет разъемную конструкцию, позволяющую отделять основной корпус от основания модуля для доступа к платам. Соединение корпуса с основанием выполнено с помощью защелок.

Подключение питания к модулю осуществляется с помощью съемного клеммника с винтовыми зажимами.

Модуль имеет встроенную шину расширения для подключения цепей питания и интерфейсных линий, установленную в основание.

На верхней панели модуля расположен интерфейсный разъем и элементы индикации.

Масса модуля составляет – 100 г.

Среднее время наработки между отказами модулей составляет не менее 100000 часов.

Обозначение модуля при заказе – Модуль расширения шины ВЕ-1 ГЖИК.421243.011.

1.2.2 Основные технические характеристики

Основные технические характеристики модуля приведены в таблице 1.

Таблица 1 – (Основные технические	характеристики модуля В	3E-1
---------------	----------------------	-------------------------	------

Характеристика	Значение	Примечание
Интерфейс обмена данными	RS-485	
Максимальная скорость обмена	1 Мбит/с	
Напряжение питания, В	20,428.8	
Потребляемый ток, мА, не более	30	Без учета подключенных модулей ввода/вывода

Интерфейс RS-485 имеет гальваническую изоляцию, электрическая прочность изоляции - не менее 500В.

Питание модуля BE-1 возможно как от шины расширения, так и от клемм питания.

Подключение согласующего резистора на линии шины расширения осуществляется перемычкой.

Количество модулей ввода/вывода из состава ПЛК OptiLogicL, которое можно одновременно подключить к модулю BE-1 составляет:

- модули AI-4, AO-2, DI-8, DO-8 не более 10 шт.;
- модули AI-8, AO-4, DI-16, DO-16 не более 5 шт.

1.2.3 Условия эксплуатации

Модуль BE-1 пригоден для эксплуатации в температурном диапазоне минус 40°С...плюс 55°С, и относительной влажности от 10% до 95% без образования конденсата.

Модуль пригоден для эксплуатации на высоте до 2000 м над уровнем моря.

Модуль, согласно ГОСТ IEC 61131-2-2012, выдерживает в процессе эксплуатации синусоидальную вибрацию в соответствии с требованиями указанными в таблице 2.

Таблица 2 - Устойчивость к синусоидальной вибрации

Частотный диапазон, Гц	Непрерывная вибрация	Случайная вибрация
5 ≤ f < 8,4	Смещение 1,75 мм	Смещение 3,5 мм
3 ≤ 1 < 6,4	постоянная амплитуда	постоянная амплитуда
8,4 ≤ f ≤ 150	Ускорение 0,5 g	Ускорение 1,0 g
0,4 \(\) \(\) \(\)	постоянная амплитуда	постоянная амплитуда

Модуль выдерживает в процессе эксплуатации полусинусоидальные удары амплитудой 15 g, длительностью 11 мс в каждой из трех взаимно перпендикулярных осей.

1.2.4 Характеристики ЭМС

Модуль BE-1, в соответствии с ГОСТ IEC 61000-6-4-2016, имеет предельные значения эмиссии в оговоренных частотных диапазонах, не более указанных в таблице 3.

Таблица 3 - Предельные значения эмиссии

Порт	Частотный диапазон	Уровень жесткости нормативный. (Расстояние измерения - 10м)	Уровень жесткости дополнительный. (Расстояние измерения - 30м)
Порт	30-230 МГц	40 дБ (мкВ/м)	30 дБ (мкВ/м)
корпуса	30-230 MI Ц	квазипиковое значение	квазипиковое значение
(помехи от	230-1000 МГц	47 дБ (мкВ/м)	37 дБ (мкВ/м)
излучения	230-1000 М ц	квазипиковое значение	квазипиковое значение

Модуль, согласно ГОСТ 30804.4.2-2013, устойчив к электростатическим разрядам в соответствии с требованиями указанными в таблице 4.

Таблица 4 - Устойчивость к электростатическим разрядам

Порты приложения	Испытания	Уровень испытаний	Критерий оценки результатов
Корпус, порты с	Контактный разряд	±4 κΒ	В
соединителями	Воздушный разряд	±4 κΒ	

Модуль, согласно ГОСТ 30804.4.3-2013, устойчив к радиочастотному электромагнитному полю в соответствии с требованиями указанными в таблице 5.

Таблица 5 - Устойчивость к электромагнитному полю

Вид излучения	Диапазон частот	Уровень испытаний	Критерий оценки результатов
Амплитудная	2,0 - 2,7 ГГц	1 В/м	
модуляция 80% 1кГц	1,4 - 2,0 ГГц	3 В/м	Α
синусоидальной формы	80 - 1000 МГц	10 В/м	

Модуль, согласно ГОСТ Р 51317.4.6-99, устойчив к кондуктивным радиочастотным помехам в соответствии с требованиями указанными в таблице 6.

Таблица 6 - Устойчивость к кондуктивным радиочастотным помехам

Вид излучения	Диапазон частот	Уровень испытаний	Критерий оценки результатов
Амплитудная модуляция 80% 1кГц синусоидальной формы	150 кГц - 80 МГц	3 B	А

Модуль, согласно ГОСТ 30804.4.4-2013, устойчив к наносекундным импульсным помехам в соответствии с требованиями указанными в таблице 7.

Таблица 7 - Устойчивость к наносекундным импульсным помехам

Порты приложения	Уровень испытаний	Критерий оценки результатов
Порты аналоговых входов	0,5 кВ	В

Модуль, согласно ГОСТ Р 51317.4.5-99, устойчив к микросекундным импульсным помехам в соответствии с требованиями указанными в таблице 8.

Таблица 8 - Устойчивость к микросекундным импульсным помехам

Порты приложения	Уровень испытаний	Критерий оценки результатов
Порт питания	0,5 кВ/СМ/DM	В

1.3 Состав изделия

Комплект поставки модуля расширения шины BE-1 приведен в таблице 8.

Таблица 8 - Комплект поставки

Наименование	Обозначение	Количество
Модуль расширения шины ВЕ-1	ГЖИК.421243.011	1
Паспорт	ГЖИК.421243.011 ПС	1
Руководство по эксплуатации	ГЖИК.421243.011 РЭ	1

1.4 Устройство и работа изделия

Описание состояния индикаторов модуля расширения шины BE-1 представлено в таблице 9.

Таблица 9 - Состояние индикаторов модуля

Индикатор/цвет	Назначение	Режимы работы
ПИТ/красный	Состояние цепей питания	Светится при работе источника питания модуля
Тх/зеленый	Состояние «ПЕРЕДАЧА» порта RS-485	Светится при передаче данных из порта RS-485
Rx/желтый	Состояние «ПРИЕМ» порта RS-485	Светится при приеме данных в порт RS- 485

Модуль расширения шины BE-1 содержит перемычки, которые должны быть установлены в соответствии с применением. Для того чтобы изменить положение перемычек необходимо отделить основной корпус модуля от основания, поставить перемычки в требуемое положение и собрать модуль в обратном порядке. Перемычка XP3, показанная на рисунке 2, предназначена для подключения согласующего резистора (терминатора) в интерфейсные линии RS-485 шины расширения. Подключение согласующего резистора необходимо при установке модуля последним относительно ведущего модуля.

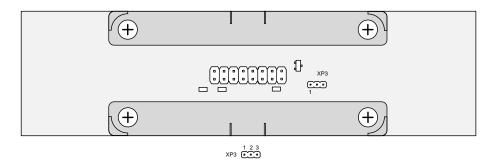


Рисунок 2 – Расположение перемычки ХРЗ

Режимы работы в зависимости от места установки перемычки показаны в таблице 10.

Таблица 10 – Установка перемычки ХРЗ

Перемычка	Расположение перемычки	Режим
XP3	1-2	Терминатор отключен
	2-3	Терминатор подключен

Перемычка XP2, установленная на плате интерфейсной модуля (ГЖИК.758776.022) показана на рисунке 3. Она предназначена для подключения согласующего резистора (терминатора) в интерфейсные линии RS-485 внешней шины. Подключение согласующего резистора необходимо при установке модуля последним относительно ведущего модуля.

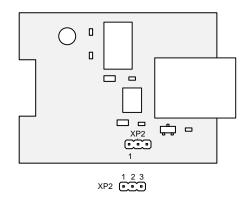


Рисунок 3 – Расположение перемычки ХР2

Режимы работы в зависимости от места установки перемычки показаны в таблице 11.

Таблица 11 – Установка перемычки ХР2

Перемычка	Расположение перемычки	Режим
XP2	1-2	Терминатор отключен
	2-3	Терминатор подключен

Назначение контактов разъема RS-485 показано на рисунке 4, где A,B – линии интерфейса, C- линия выравнивания потенциалов (изолированная земля).



Рисунок 4 - Разъем RS-485

1.5 Маркировка и пломбирование

1.5.1 Маркировка модуля

Маркировка модуля выполняется в соответствии с ГОСТ 18620-86 и содержит следующие надписи:

- наименование модуля;
- условное обозначение модуля;
- дату изготовления (месяц, год);
- порядковый номер модуля по системе нумерации предприятияизготовителя;
 - товарный знак предприятия-изготовителя;
 - надпись «Сделано в России»;

- единый знак обращения продукции на рынке ЕАЭС.

1.5.2 Пломбирование модуля

Пломбирование модуля проводится заводом-изготовителем при производстве или обслуживающей организацией при эксплуатации.

Пломбирование осуществляют на стыке лицевой панели с основанием корпуса наклеиванием гарантийной этикетки с логотипом предприятия – изготовителя или обслуживающей организацией.

1.6 Упаковка

Модуль упаковывается в специально изготовленную картонную коробку. Упаковка защищает модуль от повреждений во время транспортировки. Упаковка для хранения и транспортирования соответствует условиям транспортирования «С» по ГОСТ 23170.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

Модуль расширения шины BE-1 должен эксплуатироваться в условиях, оговоренных в «Технических характеристиках».

2.2 Подготовка изделия к использованию

2.2.1 Распаковывание

Перед распаковыванием модуля после хранения его при температуре окружающего воздуха ниже 0°С необходимо выдержать его в упаковке не менее 8 часов в помещении с положительной температурой воздуха.

Вскрыть упаковку и произвести осмотр модуля на отсутствие повреждений корпуса.

Проверить комплектность и серийный номер модуля на соответствие с данными в паспорте изделия.

2.2.2 Установка и подключение

Перед подключением модуля проверить правильность установки перемычки XP3 в соответствии с применением.

Установить модуль на DIN-рейку. Рейка должна быть подключена к защитному заземлению отдельным проводником. Установку нескольких модулей в одну линейку необходимо выполнять последовательно для правильного соединения шины расширения и исключения ее повреждения.

Количество модулей, которое можно установить в одну линейку – не более 10.

Подключить, при необходимости, линии питания модуля.

Подключить интерфейс RS-485, для соединения модулей BE-1 между собой можно использовать стандартный **прямой** патчкорд кат5.

В случае неблагоприятной электромагнитной обстановки рекомендуется применять экранированный кабель.

Примеры подключения модулей ВЕ-1 в различных конфигурациях приведены на рисунках 5 и 6.

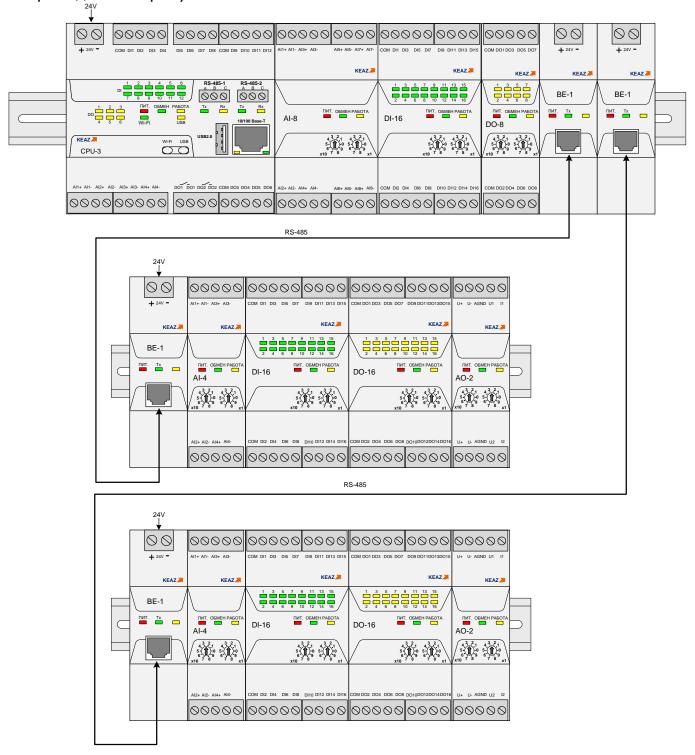


Рисунок 5 – Применение модуля BE-1 в составе ПЛК OptiLogic L

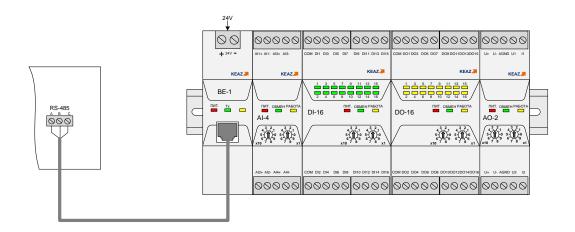


Рисунок 6 – Применение модуля ВЕ-1 с произвольным ПЛК

2.3 Использование изделия

2.3.1 Замена модуля

Модуль расширения шины BE-1 поддерживает режим «горячей замены», что позволяет производить замену неисправного изделия установленного в линейке ПЛК без отключения все линейки. Перед заменой необходимо отсоединить интерфейсный разъем, фиксаторы модуля на DIN-рейке не выдвигать! Затем отсоединить верхнюю часть модуля от основания потянув его перпендикулярно к плоскости рейки и преодолевая сопротивление защелок. Основание модуля при этом должно остаться не рейке. Установку модуля производить в обратном порядке соблюдая его ориентацию.

При замене модуля в сборе с основанием необходимо отключить питание всей линейки модулей, отсоединить разъем, выдвинуть фиксаторы модуля на DIN-рейке и раздвинуть соседние модули для отключения от них шины расширения.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Модуль расширения шины BE-1 не требует обслуживания в процессе эксплуатации.

4 ТЕКУЩИЙ РЕМОНТ

Ремонт модуля расширения шины BE-1 выполняется только предприятием-изготовителем изделия.

5 ХРАНЕНИЕ

- 5.1~B транспортной таре модули могут храниться в неотапливаемых складских помещениях при температуре окружающего воздуха от минус 50 до + 50 °C и относительной влажности до 95 % при температуре +35 °C.
- 5.2 Модули должны храниться в упаковке в закрытых отапливаемых складских помещениях при температуре от плюс 5 до плюс 40 °C и относительной влажности до 80% при температуре +20 °C.
- 5.3 В помещении не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию изделий.

6 ТРАНСПОРТИРОВАНИЕ

Модули упаковке предприятия-изготовителя В транспортироваться любым видом транспорта в крытых транспортных средствах (в железнодорожных вагонах, закрытых автомашинах, герметизированных отапливаемых отсеках самолетов соответствии с правилами транспортирования грузов на соответствующем виде транспорта, на любые расстояния при температуре окружающего воздуха от минус 50 до 50 °C и относительной влажности до 98 % при температуре 35 °C.

7 УТИЛИЗАЦИЯ

Изделие не содержит в своём составе опасных или ядовитых веществ, способных нанести вред здоровью человека или окружающей среде и не представляет опасности для жизни, здоровья людей и окружающей среды по окончании срока службы. В этой связи утилизация изделия может производиться по правилам утилизации общепромышленных отходов. Утилизация осуществляется отдельно по группам материалов: пластмассовым элементам, металлическим крепежным деталям. Модуль не содержит драгоценных металлов в компонентах изделия.

Утилизацию проводить согласно соответствующим законам и правовым документам, действующим на территории конкретного субъекта Российской Федерации.